
Linaro & AGL related
timeline
Describe the relationship of the work Linaro is
involved in with the AGL agenda

Refactored,
optimized virtio VMM with safety

island and TrustZone

Type-1 hypervisor
boot orchestration,
south-band (with
firmware) interface

Hypercalls interface and
“standardization”

2020-Q1 2020-Q4 2021-Q1 2021 ?

Virtio VMM Orchestration Standardization

Now

Start

https://wiki.automotivelinux.org/eg-virt
https://www.linaro.org/projects/

AGL requirements addressed

Inter VM communication (Shared
memory, network, character)

Create standard interfaces for
inter VM communication

Standard way of sharing
hardware (Virtio) is very
important for fast prototyping
and portability

AGL requirements addressed

VirtIO interface works as
“well-defined HAL”; SoCs are
becoming hypervisor ready;
Virtualization Ready BSP

AGL requirements addressed:

Standard API of I/O
Virtualization. Common I/O
Para-Virtualization API

AGL requirements addressed

Coordinate startup and
shutdown of all VMs

https://wiki.automotivelinux.org/eg-virt
https://www.linaro.org/projects/

● Refactored, optimized virtio; virtio over SPCI/OpenAMP; Android as virtio backend,
communication infrastructure:

● VirtIO backends that run in a de-privileged environment
● Allow better propagation of virtio updates in all hypervisors and VMMs
● Leverage DTE project for platform device assignment to VMs
● SPCI memory backend for virtio
● Maximized zero-copy mechanisms
● Non Linux backends: Android

Refactored, optimized virtio (1 of 2)

Enable front-end and back-end drivers abstractions for SoC devices , with high
performance and minimal memory footprint between the guest and virtio backend
Implement VirtIO interfaces
● VirtIO RPMB - In Progress
● VirtIO Audio
● VirtIO Watchdog
● VirtIO SMMUv
● VirtIO SPI
● VirtIO SCMI and other resource management approaches
● Prototype a minimal memory profile virtio backed with front end changes
● Create a common virtio library for use by programs implementing a backend

Refactored, optimized virtio (2 of 2) - Virtio

● Rust-VMM based VMM with safety island and TrustZone components, north
bound (with guest OSes, VMM) interfaces:

● Rust based VMM (replacing QEMU) in Xen
● Split VMM (portions of VMM running in TrustZone or Safety Island or special

domain
● Zephyr (on cortex-A or M) as VMM or partial VMM or as abstract device backend
● CortexM/R or TrustZone as part of VM control
● Hypercalls for security (incl. Access to security hardware), VM creation,

orchestration/VMM, firmware control, system control (power off, sleep…)
● White paper on certification requirements impact on hypervisors

VMM with safety island and TrustZone

● Type-1 hypervisor boot orchestration, south-band (with firmware) interfaces:
● System Device Tree bindings for static partition configuration
● System Device Tree tooling to simplify device assignment
● Safety island wrapping into a partition
● Secure Monitor/SPCI services for hypervisors (memory assignment, Secure IRQs...)
● Hypervisor as BL33 payload (proof of concept exist with Linux as BL33)

Hypervisor boot orchestration (type-1)

● Hypercalls interface description documents and “standardization”
● Produce a document to describe in details a hypercall interface to perform

common operations, using the existing Xen FuSa effort as a starting point
● The hypercall interface should be implementable by multiple vendors/hypervisors
● The documents will be written in a way so that they can be used as a base for

Safety Certification requirement documents

Hypercalls interface and “standardization”

Thank you

