
CXL Upstream Intro – V2
Linaro-open-discussions 22 MAR 2021

Jonathan Cameron – Huawei Technologies R&D (UK) Ltd.

Scope of today

• CXL 2.0 specification – available from computeexpresslink.org

• PCI DOE ECN – only available to PCI-SIG members, so discussion here
based on patches, not the spec.

• ACPI ECNs under code first route.

• No roadmaps – public call after all!

• Sharing current position of software support.

• Understand forthcoming problems.

Key takeaways

• CXL provides standard definition of stuff that is normally impdef.

• Typically less is left to firmware as a result.

• Current support is only a starting point!

Who is actually doing this?

• Intel team.
• Ben Widawsky ben.widawsky@intel.com

• Dan Williams dan.j.williams@intel.com

• (Alison Schofield, Vishal Verma, Ira Weiny)

• DOE support from
• Chris Browy cbrowy@avery-design.com

• Review and some emulation bits from myself and others.

mailto:ben.widawsky@intel.com
mailto:dan.j.williams@intel.com
mailto:cbrowy@avery-design.com

What is Compute eXpress Link (CXL)?

• Lots of fancy hardware stuff – (low latency etc)
• Software doesn’t care (to 1st order approximation)

• Device types:
• Type 1: Accelerator / NIC etc - coherent cache of host managed memory. (any

memory on device is private to it or accessed via PCIe etc)

• Type 2: Accelerator with memory and coherent cache of host management
memory. Complex, but per device driver anyway – not much common
infrastructure.

• Type 3: Memory Expansion
• Includes switches / interleaving and other fun.

Why is CXL memory special?

• It’s not that special…

• Discoverable
• What’s there? (capacity, type etc)
• What performance can we expect

(latency bandwidth etc)

• Topology also discoverable
(switch properties etc)

• Enough to establish NUMA
characteristics

• Supports a lot of things that are
IMPDEF only when dealing with
DDR.
• Hotplug
• Hierarchical Interleaving
• RAS features
• Switches, including fabric

management (composable
systems)

• Note this stuff often wrapped up
in firmware interfaces to hide
that it’s implementation defined.

Why the interest now? – no CXL 1.1 products yet

• CXL 1.1 is more or less transparent to the OS.
• Just memory or…

• Devices appear as RCiEPs that needs their own drivers.

• EDK2 – most support likely to be platform specific (no one upstreamed yet).

• CXL 2.0 is the focus
• Getting things ready.

• Specification prove out in a very public way 
• QEMU based emulation of software interfaces.

• We did this for CCIX as well, though stalled for various reasons.

Approach being taken

QEMU emulation

• Minimal so far

• Type 3 device
• BAR based mailbox
• DOE mailbox

• PCIe expansion bridge modified
to support CXL. (pxb_cxl)

• CXL root ports

• No switches yet!

Kernel support

• Mailbox for device configuration

• Management interface (cdev)

• Basic sysfs description.

• Controversial bits!
• Raw interface to userspace for

commands driver doesn’t support
(vendor defined or just new ones)

Trees and patches.

Mailing list: https://lore.kernel.org/linux-cxl/

Kernel

• https://gitlab.com/bwidawsk/linux/-/tree/cxl-2.0v8

• https://lore.kernel.org/linux-cxl/20210217040958.1354670-1-ben.widawsky@intel.com/T/#t

Qemu

• https://gitlab.com/bwidawsk/qemu/-/tree/cxl-2.0v4

• https://lore.kernel.org/linux-
cxl/20210211185129.000055d3@Huawei.com/T/#m317aea0a3e9807fdac8a7b81fa197334fd0845
ea

• Plan: https://gitlab.com/bwidawsk/qemu/-/snippets/2070304

Nodectl – userspace:

• https://lore.kernel.org/linux-cxl/20210219020331.725687-1-vishal.l.verma@intel.com/T/#t

https://gitlab.com/bwidawsk/linux/-/tree/cxl-2.0v8
https://lore.kernel.org/linux-cxl/20210217040958.1354670-1-ben.widawsky@intel.com/T/#t
https://lore.kernel.org/linux-cxl/20210211185129.000055d3@Huawei.com/T/#m317aea0a3e9807fdac8a7b81fa197334fd0845ea
https://lore.kernel.org/linux-cxl/20210211185129.000055d3@Huawei.com/T/#m317aea0a3e9807fdac8a7b81fa197334fd0845ea
https://gitlab.com/bwidawsk/qemu/-/snippets/2070304
https://lore.kernel.org/linux-cxl/20210219020331.725687-1-vishal.l.verma@intel.com/T/#t

The many mailboxes of CXL.

PCI Express config space is small; lots to describe and control so:

• Register block location structure in config space (DVSEC)

• CXL specific mailbox in PCI BAR space
• Supports querying of available functionality.

• (second one of these – ignore)

• PCIE ECN - Data Object Exchange Mailbox in PCIe Config Space
• 1+ of these.

• Slow interface mainly used for retrieving topology description CDAT.

TODO list

EDK2 support for CXL 2.0

• CXL 1.1 support like to surface with
platforms

• Coldplug – it’s all memory flow

• OS managed hotplug – configure
HPA memory windows.

QEMU

• Emulate whatever is need to verify
software stack.

Kernel

• PCI 5.0 ECNs
• DOE mailboxes
• CMA (component measurement and

authentication)
• IDE (integrity and data encryption)

• Hotplug
• NUMA node hotplug.

• Switch support (CDAT via DOE etc)
• RAS
• Type 1 / type 2 devices.

TODO: Enumerating the memory

Cold-plug / firmware first

• Similar to CXL 1.1 but more generic
firmware (as self describing hardware)

• OS doesn’t need to be CXL aware.

• EDK2 does the work.

• Just looks like memory

• Not clear if hotplug flows possible.

OS driven / hotplug

• Relies on preconfiguration of host.

• Fixed memory windows route to CXL
RPs.

• Host interleave preset for each
windows.

• OS responsible for bring up of
memory. (similar to virtio-mem)

TODO: RAS flows

Error reporting via

• AER combined with..

• RAS capability in BAR space

• Event logs on devices via
mailbox.

• Lot of open questions

• Likely to evolve for a while.

New stuff for 22 March

Handling of memory on Type 2 devices

• Heavily simplified – but hopefully enough for this discussion!

• For type 2 device: think GPU.

• 2 modes, tracked at a device defined granularity (lets say 4kiB)
• Host biased – looks like a type 3 device, the coherency is managed as part of

the host SoC.

• Device biased – device has issued coherence messages to ensure there are
not cached copies of our 4kiB region in the host processor. The device can
then do ‘near memory’ processing.

• Any access from Host when in Device Bias must be served (transition back to
host bias)

Vikram’s Question

• As type 2 memory is ‘just memory’ (in host biased mode) we can just use it
as normal memory.

• How should it be presented by Firmware?
• Want to be able to make it available to the GPU (driver managed) when needed only.

• Problem 1: Normal memory at boot can’t be offlined later
• Mark it as Special Purpose Memory in EFI.
• Similar approach to the HMEM used for NVDIMMS - you deliberately hotplug later.
• Likely to need element of BIOS control…

• Problem 2: Pinned memory in region.
• Use ZONE_MOVEABLE.
• Patch sets under review to migrate memory out of ZONE_MOVEABLE on pin.

Generic Initiator Reminder

• Generic initiators are first class
citizen in ACPI NUMA Description.

• Originator of memory requests
that is not a CPU (NIC / Accelerator
etc)

• Want to be able to do clever load
balancing etc, so detailed info
needed by driver.

• devm_kzalloc() will allocate
memory on local node or fallback
to ‘nearest memory’ (SLIT)

• Linux currently initializes them as
memory-less nodes.

• Same zone fallbacks etc as a CPU
node that happens to have no
memory.

• Simple + just works + minimal code
as we need this to ‘just work’.

• Not on ARM64 this required no
architecture code at all 

GI as bridge for CXL etc.

• UEFI code first proposal.

• Define a GI node as being both a
possible initiator and target (so
can be targeted by memory
operations)

• Use this info to describe NUMA
properties to the ‘edge’ of the
SoC.

• Then use CDAT (data read from
CXL end points and switches) to
provide the rest of the
information relevant to
accessing CXL initiators and
memory.

• Build kernel view of NUMA from
all this info (update at runtime)

https://lore.kernel.org/linux-acpi/CAPcyv4gmd_cygXK0PpGkXmJLC3_ctEpRvpi5P-
QcuXusFX5oNQ@mail.gmail.com/

Issues

• Unwanted infrastructure created (zone lists make no sense if no
initiator actually in the GI node)

• Potential backwards compatibility (minor, it will just look ‘odd’).

Solutions

• New entry type in SRAT (fairly trivial to do)

• Flag to at least let OS aware of this usecase know this GI Node is not
actually going to initiate anything so don’t create a ‘memory less
node’ for it.

Other topics?

