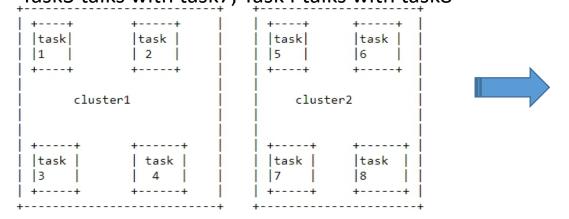
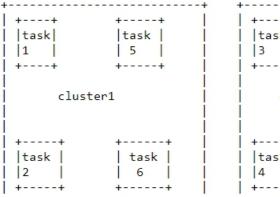
Cluster Scheduler RFC v6

Barry Song

Optimizing tasks deployment


- spread unrelated task
- √ task1 doesn't talk with task2



pack related task

Task1 talks with task5; Task2 talks with task6;

Task3 talks with task7; Task4 talks with task8

+	
++	++
task	task
3	7
++	++
 cluste	er2
++	++
task	task
4	8
++	++

current approach

RFC v6: https://lore.kernel.org/lkml/20210420001844.9116-1-song.bao.hua@hisilicon.com/

- added cluster sched_domain
- -> Load Balance will help spread tasks
- changed WAKE_AFFINE
- -> if waker and wakee are in the same LLC(NUMA), scan cluster instead of LLC

```
static int
select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
        struct sched domain *tmp, *sd = NULL;
        int cpu = smp_processor_id();
        int new cpu = prev cpu;
        int want affine = 0:
        /* SD flags and WF flags share the first nibble */
        int sd flag = wake flags & 0xF;
         * if cpu and prev_cpu share LLC, consider cluster sibling rather
         * than llc. this is typically true while tasks are bound within
         * one numa
        int cluster = sched cluster active() && cpus share cache(cpu, prev cpu, 0);
       if (wake_flags & WF_TTWU) {
                record wakee(p);
                if (sched energy enabled()) {
                        new_cpu = find_energy_efficient_cpu(p, prev_cpu);
                        if (new cpu >= 0)
                                return new_cpu;
                        new cpu = prev cpu;
```

-> wake_wide(), select_idle_sibling() will move to use cluster while cluster==true

```
bool cpus_share_cache(int this_cpu, int that_cpu, int cluster)
{
    if (cluster)
        return per_cpu(sd_cluster_id, this_cpu) == per_cpu(sd_cluster_id, that_cpu);
    else
        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
```

Spread unrelated tasks(demo)

Pack related task(demo)

numactl -N 0 hackbench -p -T -l 1000000000 -f 1 -g 6 (12 threads, 6 sender-receiver couples)

w/o:

couples are randomly deployed

PID	USER	PR	NI	VIRT	RES	SHR S %CPU !	%MEM	TIME+ COMMAND	Р
2347	root	20	0	3580	556	444 R 93.7	0.0	3:02.93 hackbench	13
2346	root	20	0	3580	556	444 R 99.7	0.0	3:15.23 hackbench	12
2345	root	20	0	3580	556	444 R 93.4	0.0	3:02.30 hackbench	(15)
2344	root	20	0	3580	556	444 R 99.9	0.0	3:15.24 hackbench	10
2343	root	20	0	3580	556	444 R 93.4	0.0	3:07.12 hackbench	9
2342	root	20	0	3580	556	444 R 99.9	0.0	3:15.14 hackbench	8_
2341	root	20	0	3580	556	444 R 99.7	0.0	3:15.22 hackbench	3
2340	root	20	0	3580	556	444 R 99.3	0.0	3:14.85 hackbench	5
2339	root	20	0	3580	556	444 R 99.9	0.0	3:13.03 hackbench	14
2338	root	20	0	3580	556	444 R 99.7	0.0	3:15.22 hackbench	\ 4 \
2337	root	20	0	3580	556	444 R 93.4	0.0	3:02.10 hackbench	1
2336	root	20	0	3580	556	444 R 99.7	0.0	3:15.23 hackbench	0

W:

couples are packed

PID USER	PR NI	VIRT RES	SHR S %CPU %MEM	TIME+ COMMAND	<u>F</u>
2053 root	20 0	3580 504	436 R 99.9 0.0	0:42.36 hackbench	7
2052 root	20 0	3580 504	436 R 99.3 0.0	0:42.18 hackbench	5
2051 root	20 0	3580 504	436 R 93.4 0.0	0:39.69 hackbench	21
2050 root	20 0	3580 504	436 R 99.7 0.0	0:42.35 hackbench	26
2049 root	20 0	3580 504	436 R 99.9 0.0	0:42.36 hackbench	19
2048 root	20 0	3580 504	436 R 99.7 0.0	0:42.16 hackbench	16
2047 root	20 0	3580 504	436 R 99.7 0.0	0:42.36 hackbench	
2046 root	20 0	3580 504	436 R 99.0 0.0	0:42.02 hackbench	وسيآ
2045 root	20 0	3580 504	436 R 99.7 0.0	0:42.36 hackbench	
2044 root	20 0	3580 504	436 R 99.3 0.0	0:42.22 hackbench	
2043 root	20. 0	3580 504	436 R 99.9 0.0	0:42.36 hackbench	15
2042 root	20 0	3580 504	436 R 99.9 0.0	0:42.28 hackbench	12
•					

decreased latency