
Open-CMSIS-Pack
Technical Project Meeting 2021-06-29

This meeting is recorded !

Agenda

• Q&A follow up from CMSIS Review meeting

• Introducing requirements for Multi-Project (Reinhard Keil, Arm)

• Introducing vidx2pidx repository and utility (Charles Oliveira, Linaro)

• Review “way of working”

• Wrap Up

• AoB

© 2021 Arm

Arm CMSIS Team
29/6/2021

Concept for Complex Project Setup

4 © 2021 Arm4

Core
Library
Components

Overall Project
Concept

Resource
Management

PoC Tools

Process
Improvements

Jul/Aug 2021 Sep/Oct 2021 Nov/Dec 2021 Jan/Feb 2022 Future

Open-CMSIS-Pack Provisional Roadmap Details

Last Update: June 21, 2021

Started ConceptAdvanced PlanningDevelopment

CI for Example/Pack

• Keep examples up-to-date
• Submit process for packs

with CI

Base Components

• Open-Source existing Arm
implementations

• Cmake to Pack conversion
• Multi-Project Targets

• Review DeviceTree and CMSIS-Zone
• Define structure of “Umbrella” projects for multi-core, etc.
• Organize taxonomies of standardized API interfaces

• Explore potential ways to secure pack content

Base Technology

• Implement project management for multi-core and
secure/non-secure setups

• Refine the layer concept for better code re-use

• Debug and download
aspects of Multi-Project
Targets

Project Format

Target Connection

• CPRJ project examples
• UX improvements

• Recreate Cbuild in public
GitHub Infra-structure

• Close gaps in Cbuild
• Pack download/install

Project Build

• CMake to Pack Converter
• Pack Validation (PackChk)

Pack Content

Example Contribution

• Partners are enabled to
submit own examples

• Information from CMSIS-
Packs

• Many boards with
reference designs

• Text based configuration
utility (aka Config
Wizard)

ConfigurationProject Management

Multi-Project

Optimize Delivery

• Evolution of specification
• Evolution of common components

Collecting Input

5 © 2021 Arm5

What Requirements should we consider for the future?
Use cases driven by Application Developer

• Holistic view on software projects considering:
• Structure

– many dependent/related projects
– reuse of partial projects

• Code Generation:
– build order dependencies
– multiple build configurations
– HW resource allocation partitioning and dependencies
– generated/assisted software configuration

• Deployment and Download:
– flash programming setup and configuration
– Firmware update processes including OTA programming

• Debugging:
– debug setup and configuration

• Simplify testing and porting of applications across devices and boards

6 © 2021 Arm6

Project DProject BProject A

Multi-Project Requirements
Separate projects independently developed; combined in a multi-project workspace

Security

Storage

Crypto

Attestation

Device / Board HAL

RTOS

U
se

r
A

p
p

lic
at

io
n

C
lo

u
d

C
o

n
n

ec
to

r

Se
cu

re
 N

et
w

o
rk

In
te

rf
ac

e

Secure Boot

M
L

Li
b

ra
ry

M
L

D
at

a

U
X

G
ra

p
h

ic
Im

ag
es

C
o

n
tr

o
l A

lg
o

ri
th

m

Processor #1Processor #2

Project C

Proposal: Introduce an “umbrella” project file (provisionally called *.ctarget)

7 © 2021 Arm7

This is a multi-project view

Adopt CMSIS-Zone Concepts for Multi-Project Configuration?
Discussion and decision for multi-project configuration: CMSIS-Zone and/or DeviceTree
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone

8 © 2021 Arm8

Layers: set of pre-configured software components
GitHub - MDK-Packs/CB_Lab4Layer: CMSIS-Build Lab with Layers

Lab4Layer shows the following
concepts:

Examples that are composed
from different layers.

Readme.md files that explain the
examples: generated from *.md
file snippets

Interfaces that are:

- provided by a layer
- consumed by a layer

This allows to auto-generate a list
of possible combinations.

https://github.com/MDK-Packs/CB_Lab4Layer

9 © 2021 Arm9

User Application
Code

Layers: deployment to different targets for test automation
FV

P
La

ye
r

Simulated I/O via
Python scripts
and stimuli files

IoT/ML SW
Platform

CI/CD environment for test automation – scale from Simulation to Hardware to Deployment

Event Log file

User Application
Code

B
o

ar
d

La
ye

r

IoT/ML SW
Platform

Event Log file

Device SDK with
configuration

User Application
Code

Ta
rg

et
La

ye
r

IoT/ML SW
Platform

Event Log file

Device SDK with configuration

More Software

More DriversFVP Drivers HW Drivers

Real I/O via test
equipment

Real I/O via
user peripherals

HW Drivers

Unit & Integration Testing Deployment (System Testing)

Essential the same event logs are generated across the different deployments. This ensures correctness.
Initially: Keil Studio could focus on Ease-of-Use for this process and Event Log Analysis

Proposal: Each setup a different
*.cprj file; but refers common
*.clayer files.

10 © 2021 Arm10

File points to… Description

*.pack *.rzone
*.svd

Device Family Pack: describes device, device variants, processor cores, memory, and debug options.

*.rzone Resource file: describes device, processor cores, memory, and peripherals. Duplicates to some extend *.pack and *.svd, but does not cover
device variants. Content can be generated to some extend using *.pack and *.svd, but will be incomplete (and in may cases incorrect). *.rzone
files describe also sub-systems (after an assignment).

Perhaps the *.rzone file can replace some content in the *.pack file or the *.pack/*.svd file can be extended to allow full generation of the
*.rzone master file.

*.azone *.rzone Describes assignments to project zones (that can be viewed as projects) or execution zones (to setup MPU within a project).

.cprj (.clayer
proposed)

Describes a project and repeats device information. Linker setup could be potentially achieved using *.azone files.

*.clayer Describes a layer with pre-configured software components and additional source files.

*.flm Flash algorithm files; contain information about flash sector and block sizes. Somewhat duplicated in *.rzone alignment information.

File points to… Description

*.ctarget *.azone
*.cprj (multiple)
*.cdebug

Describes the projects that compose a target application. Potentially this could be merged with the *.azone file.

*.cdebug Debug configuration for the target. Potentially a *.ctarget could have multiple debug configurations, i.e. for CMSIS-DAP, ULINK, J-Link, DSTREAM,
etc.

New proposed files:

Note: for stand-along tools like CMSIS-Build or a command-line debug tool (DSE) it should be sufficient to use a *.cprj or *.cdebug file to configure
the tool. It is therefore OK to somewhat duplicate information in the various files.

Important is a consistency check of the various information across the files.

This is a proposal

11 © 2021 Arm11

Close gaps on *.cprj

• Enable GCC and AC6 based compilation with same *.cprj file

• Pre-build/post-build steps, ideally consistent across Linux/Win/MacOS

• Integration of generators (review *.gpdsc concept)
• Consider both: Cloud and Desktop flows

• Different build configuration (release, debug, test) with a default setting

• Stand-alone build (allow to integrate *.clayer)
• Should a *.cprj that refers external *.clayer files have a different extension, i.e. *.cprjx?

IMPORTANT NOTE: CMSIS-Build and the underlying project format(s) should support
Command-Line and IDE flows (we use it in Keil Studio as the primer format)

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm

CMSIS-Pack index file processing (vidx2pidx)

● Charles Oliveira works for Linaro

● First Open-CMSIS-Pack CLI tool development

● https://github.com/Open-CMSIS-Pack/vidx2pidx

● Using GO language and GitHub Actions

● DEMO

● Q&A

https://github.com/Open-CMSIS-Pack/vidx2pidx

Way of working …

● Definition of done?

○ A User Story is done, when an ADR is accepted?

■ User stories have acceptance criteria giving the DoD

■ Acceptance criteria typically involve the user being able
to replay the story; requiring some sort of implementation

○ An ADR is done when an implementation is available?

■ ADR is recording a design decision

■ ADRs can be proposed and accepted

■ ADRs are long-running and cannot be "done"

■ ADRs might be violated

■ ADRs can be revoked or superseded by new ones

Way of working …

● User Stories:

○ GitHub issues – Propose (1) -> In Review (2) -> Accepted (3) -> JIRA issue (4) -> Prioritize backlog

○ Sprint planning -> Break down -> Development

● Contribute via “Pull requests”

○ Need to define criteria for accepting contributions (Volunteers?)

○ Need repository gate keeper

Wrap Up

Next week:

● Assisted CMSIS-Pack generation of CMake-based projects (CMSIS-13)

July:

● Protecting CMSIS-Pack from malicious tempering (TBD)

August:

● Kick-off development for project creation and maintenance MVP CMSIS-12

● Actions:

● Next Meeting: Tuesday July 6th 2021, 15:00 – 16:00 (UK)

https://linaro.atlassian.net/browse/CMSIS-13
https://linaro.atlassian.net/browse/CMSIS-12

Thank you

