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This meeting is recorded !



Agenda

• Q&A follow up from CMSIS Review meeting

• Introducing requirements for Multi-Project (Reinhard Keil, Arm)

• Introducing vidx2pidx repository and utility (Charles Oliveira, Linaro)

• Review “way of working”

• Wrap Up

• AoB
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Open-CMSIS-Pack Provisional Roadmap Details

Last Update: June 21, 2021

Started ConceptAdvanced PlanningDevelopment

CI for Example/Pack

• Keep examples up-to-date
• Submit process for packs 

with CI

Base Components

• Open-Source existing Arm 
implementations

• Cmake to Pack conversion
• Multi-Project Targets

• Review DeviceTree and CMSIS-Zone
• Define structure of “Umbrella” projects for multi-core, etc.
• Organize taxonomies of standardized API interfaces

• Explore potential ways to secure pack content

Base Technology

• Implement project management for multi-core and 
secure/non-secure setups

• Refine the layer concept for better code re-use

• Debug and download 
aspects of Multi-Project 
Targets

Project Format

Target Connection

• CPRJ project examples
• UX improvements

• Recreate Cbuild in public 
GitHub Infra-structure

• Close gaps in Cbuild
• Pack download/install

Project Build

• CMake to Pack Converter
• Pack Validation (PackChk)

Pack Content

Example Contribution

• Partners are enabled to 
submit own examples

• Information from CMSIS-
Packs

• Many boards with 
reference designs

• Text based configuration 
utility (aka Config 
Wizard)

ConfigurationProject Management

Multi-Project

Optimize Delivery

• Evolution of specification
• Evolution of common components

Collecting Input
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What Requirements should we consider for the future?
Use cases driven by Application Developer

• Holistic view on software projects considering:
• Structure

– many dependent/related projects
– reuse of partial projects

• Code Generation:
– build order dependencies
– multiple build configurations 
– HW resource allocation partitioning and dependencies
– generated/assisted software configuration

• Deployment and Download:
– flash programming setup and configuration
– Firmware update processes including OTA programming

• Debugging:
– debug setup and configuration

• Simplify testing and porting of applications across devices and boards
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Project DProject BProject A

Multi-Project Requirements
Separate projects independently developed; combined in a multi-project workspace

Security
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Project C

Proposal: Introduce an “umbrella” project file (provisionally called *.ctarget)
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This is a multi-project view

Adopt CMSIS-Zone Concepts for Multi-Project Configuration?
Discussion and decision for multi-project configuration: CMSIS-Zone and/or DeviceTree
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone
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Layers: set of pre-configured software components
GitHub - MDK-Packs/CB_Lab4Layer: CMSIS-Build Lab with Layers

Lab4Layer shows the following 
concepts:

Examples that are composed 
from different layers.

Readme.md files that explain the 
examples: generated from *.md 
file snippets

Interfaces that are:

- provided by a layer
- consumed by a layer

This allows to auto-generate a list 
of possible combinations.

https://github.com/MDK-Packs/CB_Lab4Layer
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User Application 
Code

Layers: deployment to different targets for test automation
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CI/CD environment for test automation – scale from Simulation to Hardware to Deployment

Event Log file
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More Software

More DriversFVP Drivers HW Drivers

Real I/O via test 
equipment

Real I/O via 
user peripherals

HW Drivers

Unit & Integration Testing Deployment (System Testing)

Essential the same event logs are generated across the different deployments. This ensures correctness.
Initially: Keil Studio could focus on Ease-of-Use for this process and Event Log Analysis

Proposal: Each setup a different 
*.cprj file; but refers common 
*.clayer files.
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File points to… Description

*.pack *.rzone
*.svd

Device Family Pack: describes device, device variants, processor cores, memory, and debug options.

*.rzone Resource file: describes device, processor cores, memory, and peripherals. Duplicates to some extend *.pack and *.svd, but does not cover 
device variants.  Content can be generated to some extend using *.pack and *.svd, but will be incomplete (and in may cases incorrect). *.rzone
files describe also sub-systems (after an assignment).  

Perhaps the *.rzone file can replace some content in the *.pack file or the *.pack/*.svd file can be extended to allow full generation of the 
*.rzone master file.

*.azone *.rzone Describes assignments to project zones (that can be viewed as projects) or execution zones (to setup MPU within a project).

*.cprj (*.clayer
proposed)

Describes a project and repeats device information.  Linker setup could be potentially achieved using *.azone files.

*.clayer Describes a layer with pre-configured software components and additional source files.

*.flm Flash algorithm files; contain information about flash sector and block sizes. Somewhat duplicated in *.rzone alignment information.

File points to… Description

*.ctarget *.azone
*.cprj (multiple)
*.cdebug

Describes the projects that compose a target application.  Potentially this could be merged with the *.azone file.

*.cdebug Debug configuration for the target.  Potentially a *.ctarget could have multiple debug configurations, i.e. for CMSIS-DAP, ULINK, J-Link, DSTREAM, 
etc.

New proposed files:

Note: for stand-along tools like CMSIS-Build or a command-line debug tool (DSE) it should be sufficient to use a *.cprj or *.cdebug file to configure 
the tool.  It is therefore OK to somewhat duplicate information in the various files.  

Important is a consistency check of the various information across the files. 

This is a proposal
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Close gaps on *.cprj

• Enable GCC and AC6 based compilation with same *.cprj file

• Pre-build/post-build steps, ideally consistent across Linux/Win/MacOS

• Integration of generators (review *.gpdsc concept)
• Consider both: Cloud and Desktop flows

• Different build configuration (release, debug, test) with a default setting

• Stand-alone build (allow to integrate *.clayer)
• Should a *.cprj that refers external *.clayer files have a different extension, i.e. *.cprjx?

IMPORTANT NOTE: CMSIS-Build and the underlying project format(s) should support 
Command-Line and IDE flows (we use it in Keil Studio as the primer format)
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CMSIS-Pack index file processing (vidx2pidx)

● Charles Oliveira works for Linaro

● First Open-CMSIS-Pack CLI tool development

● https://github.com/Open-CMSIS-Pack/vidx2pidx

● Using GO language and GitHub Actions

● DEMO

● Q&A

https://github.com/Open-CMSIS-Pack/vidx2pidx


Way of working …

● Definition of done?

○ A User Story is done, when an ADR is accepted?

■ User stories have acceptance criteria giving the DoD

■ Acceptance criteria typically involve the user being able
to replay the story; requiring some sort of implementation

○ An ADR is done when an implementation is available?

■ ADR is recording a design decision

■ ADRs can be proposed and accepted

■ ADRs are long-running and cannot be "done"

■ ADRs might be violated

■ ADRs can be revoked or superseded by new ones



Way of working …

● User Stories: 

○ GitHub issues – Propose (1) -> In Review (2) -> Accepted (3) -> JIRA issue (4) -> Prioritize backlog

○ Sprint planning -> Break down -> Development

● Contribute via “Pull requests”

○ Need to define criteria for accepting contributions (Volunteers?)

○ Need repository gate keeper



Wrap Up

Next week:

● Assisted CMSIS-Pack generation of CMake-based projects (CMSIS-13)

July:

● Protecting CMSIS-Pack from malicious tempering (TBD)

August:

● Kick-off development for project creation and maintenance MVP CMSIS-12

● Actions:

● Next Meeting: Tuesday July 6th 2021, 15:00 – 16:00 (UK)

https://linaro.atlassian.net/browse/CMSIS-13
https://linaro.atlassian.net/browse/CMSIS-12


Thank you


