
Open-CMSIS-Pack
Technical Project Meeting 2021-07-13

This meeting is recorded !

Agenda

● Welcome and review of the agenda

● Actions from last week

● CLI tool for assisted Pack creation of Cmake based projects
○ CMSIS-13

● Feedback collection

● Project Generation – potential tool flow (discussion)
○ Issue #12

● Wrap Up

https://linaro.atlassian.net/browse/CMSIS-13
https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/12

Actions from last week

● Create: CMSIS-Build Gap Analysis (Issue #11) – Joachim Krech

○ Summary from Shadowfax Componentization Exploration Team

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/11

© 2021 Arm

Daniel Brondani
13th July 2021

Assisted Pack creation based on CmakeLists

CMSIS Pack Generator

Background: CMSIS-Pack generation is a manual process

This document explains how to structure a software stack
https://github.com/ARM-software/CMSIS_5/blob/develop/Scalable%20Software%20Stack.pdf

A pack is described in XML format. Today there is
limited tool support for pack creation.

To create a pack, the pack provider must:

• Define the User View of the Components
• Component description and component version
• Link to documentation
• Dependency to other components
• Configuration file(s) for the component
• Etc.

• Maintain a list of source files for the Components

https://github.com/ARM-software/CMSIS_5/blob/develop/Scalable%20Software%20Stack.pdf

Can we simplify pack creation for Cmake based projects?

Delivering embedded software components in a CMSIS Pack has several advantages over CMakeLists.
Software component providers can specify the interfaces and relationship to other software components.

CMake is used to maintain many projects, hence automate pack creation is desired. We explored two ways:

• TF-M Approach: takes as input a PDSC template, a python settings file with a list of CMake target build configurations
• Python settings file (manually written) maps CMake targets and components to be generated.
• Python uses the CMake File API to retrieve build info for every CMake target build configuration.
• and combines this info with the maps provided in the Python settings file to generate components and conditions.

• AWS Approach: uses a manifest.yml template and CMakeLists:
• manually written CMake variables describing source files and include paths.
• A CMake script appends the build info to the manifest.yml file.
• The updated manifest.yml file is used to generate a PDSC component.

These trails resulted in the following proposal for packgen utility, an assisted pack generation process from Cmake:
• The packgen utility reads a manifest YAML file with metadata
• It then runs the CMake generation step to retrieve targets build information (source files and include paths)
• It finally generates the pack description, copy pack files, compress it and check its validity.

Demo: https://github.com/brondani/aws-iot-device-sdk-embedded-C/tree/packgen-cmake/tools/cmsis

https://www.keil.com/pack/doc/CMSIS/Pack/html/index.html
https://github.com/brondani/aws-iot-device-sdk-embedded-C/tree/packgen-cmake/tools/cmsis

CMSIS Pack Generation Process

Input:
- CMakeLists.txt
- manifest.yml

Output:
- PDSC file
- Compressed Pack

Example of CMakeLists dependencies
Graphviz generated by CMake for https://github.com/aws/amazon-freertos

https://github.com/aws/amazon-freertos

Proof of Concept

CMake Targets

TARGET: cmsis_aws_iot_ota

src: libraries/3rdparty/tinycbor/src/cborencoder.c

src: libraries/3rdparty/tinycbor/src/cborencoder_close_container_checked.c

src: libraries/3rdparty/tinycbor/src/cborerrorstrings.c

src: libraries/3rdparty/tinycbor/src/cborparser.c

src: libraries/3rdparty/tinycbor/src/cborparser_dup_string.c

src: libraries/3rdparty/tinycbor/src/cborpretty.c

src: libraries/3rdparty/tinycbor/src/cborpretty_stdio.c

src: libraries/coreJSON/source/core_json.c

src: libraries/ota.c

src: libraries/ota_base64.c

src: libraries/ota_interface.c

inc: libraries/3rdparty/tinycbor/src

inc: libraries/coreJSON/include

inc: libraries/include

inc: libraries/portable

TARGET: cmsis_aws_iot_json

src: libraries/coreJSON/core_json.c

inc: libraries/coreJSON/include

TARGET: cmsis_tinycbor

src: libraries/3rdparty/tinycbor/src/cborencoder.c

src: libraries/3rdparty/tinycbor/src/cborencoder_close_container_checked.c

src: libraries/3rdparty/tinycbor/src/cborerrorstrings.c

src: libraries/3rdparty/tinycbor/src/cborparser.c

src: libraries/3rdparty/tinycbor/src/cborparser_dup_string.c

src: libraries/3rdparty/tinycbor/src/cborpretty.c

src: libraries/3rdparty/tinycbor/src/cborpretty_stdio.c

inc: libraries/3rdparty/tinycbor/src

CMakeLists.txt

add_library(cmsis_aws_iot_ota)

target_sources(cmsis_aws_iot_ota PUBLIC ${OTA_SOURCES})

target_include_directories(cmsis_aws_iot_ota PUBLIC

${OTA_INCLUDE_PUBLIC_DIRS})

set_target_properties(cmsis_aws_iot_ota PROPERTIES DEFINE_SYMBOL "")

set_target_properties(cmsis_aws_iot_ota PROPERTIES LINKER_LANGUAGE C)

add_library(cmsis_aws_iot_json)

target_sources(cmsis_aws_iot_json PUBLIC ${JSON_SOURCES})

target_include_directories(cmsis_aws_iot_json PUBLIC

${JSON_INCLUDE_PUBLIC_DIRS})

set_target_properties(cmsis_aws_iot_json PROPERTIES DEFINE_SYMBOL "")

set_target_properties(cmsis_aws_iot_json PROPERTIES LINKER_LANGUAGE C)

add_library(cmsis_tinycbor)

target_sources(cmsis_tinycbor PUBLIC ${TINYCBOR_SOURCES})

target_include_directories(cmsis_tinycbor PUBLIC

${TINYCBOR_INCLUDE_DIRS})

set_target_properties(cmsis_tinycbor PROPERTIES DEFINE_SYMBOL "")

set_target_properties(cmsis_tinycbor PROPERTIES LINKER_LANGUAGE C)

The PoC with packgen binaries and a getting started
guide can be found in the following forked branch:
https://github.com/brondani/aws-iot-device-sdk-
embedded-C/tree/packgen-cmake/tools/cmsis

Green 1. component in the pack

Red 2. component in the pack

Blue External component

https://github.com/brondani/aws-iot-device-sdk-embedded-C/tree/packgen-cmake/tools/cmsis

Proof of Concept

cmsis.yml

components:

- name: cmsis_aws_iot_ota

target: cmsis_aws_iot_ota

attributes: {Cclass: "AWS IoT", Cgroup: "AWS IoT OTA", Cversion: "1.0.0"}

description: "Client library for Device Over-the-air Update service"

dependencies: [cmsis_tinycbor, cmsis_aws_iot_json]

conditions:

- require: {Cclass: "Data Exchange", Cgroup: "CBOR", Csub: "TinyCBOR"}

- name: cmsis_aws_iot_json

target: cmsis_aws_iot_json

attributes: {Cclass: "AWS IoT", Cgroup: "coreJSON", Cversion: "1.0.0"}

description: "Parser for ECMA-404 JSON standard"

PDSC

<conditions>

<condition id="cmsis_aws_iot_ota Condition">

<require Cclass="AWS IoT" Cgroup="coreJSON"/>

<require Cclass="Data Exchange" Cgroup="CBOR" Csub="TinyCBOR"/>

</condition>

</conditions>

<components>

<component Cclass="AWS IoT" Cgroup="AWS IoT OTA" Cversion="1.0.0“

condition="cmsis_aws_iot_ota Condition">

<description>Client library for Device Over-the-air</description>

<files>

<file category="source" name="libraries/ota.c"/>

<file category="source" name="libraries/ota_base64.c"/>

<file category="source" name="libraries/ota_interface.c"/>

<file category="include" name="libraries/include/"/>

<file category="include" name="libraries/portable/"/>

</files>

</component>

<component Cclass="AWS IoT" Cgroup="coreJSON" Cversion="1.0.0">

<description>Parser for ECMA-404 JSON standard</description>

<files>

<file category="source" name="libraries/coreJSON/core_json.c"/>

<file category="include" name="libraries/coreJSON/include/"/>

</files>

</component>

</components>

Green 1. component in the pack

Red 2. component in the pack

Blue External component

Further work: handling different use cases
Use

case

Component CMake

Target

Build

Configuration

Build Info File

Condition

1
Cclass1::Cgroup1::Csub1::VariantA

Target1

BuildConfig1 Build1
Cclass1::Cgroup1::Csub1::VariantB BuildConfig2 Build2
Cclass1::Cgroup1::Common Common Build(1&2)

2 Cclass2::Cgroup2::Csub2 Target2
BuildConfig3 Build3 Cond1
BuildConfig4 Build4 Cond2

3 Cclass3::Cgroup3::Csub3 Target3 Any Build5

4
Cclass4::Cgroup4::Csub4 Target4 Any Build6
External-Pack Cclass5::Cgroup5::Csub5 Target5 Any Build7

5
Cclass6::Cgroup6::Csub6

Target6
Any

Build8
Target7 Build9

© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

Feedback

● 5th meeting of the Open-CMSIS-Pack technical project meeting – Time to reflect

● What is working well?

● What is not working for you?

● What should we do differently?

● What can we do to improve?

● Checking availability during summer vacation period (July / Aug 2021)

○ Action all: Please send email to Joachim.Krech@arm.com listing the
weeks you are unavailable (wk29 – wk35)

mailto:Joachim.Krech@arm.com

Discussion Topic

● Project Generation – potential tool flow
○ Issue #12

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/12

Wrap Up

Issue Overview

Next week:

● Introduction to CMSIS-Zone methodology

August:

● Protecting CMSIS-Pack from malicious tempering (TBD)

● Kick-off development for project creation and maintenance MVP CMSIS-12

● Next Meeting: Tuesday July 20th 2021, 15:00 – 16:00 (UK)

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues?q=is%3Aissue+is%3Aopen+sort%3Acreated-asc
https://linaro.atlassian.net/browse/CMSIS-12

Thank you

