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Change log

2021/09/01: Added diagram for certificate management after LOD call.



Background (why are we talking about this?)

• It was on the TODO list and we needed more evidence to back DOE 
implementation choices.

• Raised lots of questions: Hence Plumbers microconf proposal…

• Kernel: 
• https://lore.kernel.org/linux-pci/20210831135517.0000716f@Huawei.com/#t

• QEMU emulation (thanks to Avery Design)
• https://lore.kernel.org/qemu-devel/1624665723-5169-1-git-send-email-

cbrowy@avery-design.com/

• SPDM reference implementation https://www.github.com/dmtf

https://lore.kernel.org/linux-pci/20210831135517.0000716f@Huawei.com/#t
https://lore.kernel.org/qemu-devel/1624665723-5169-1-git-send-email-cbrowy@avery-design.com/
https://www.github.com/dmtf


DMTF - Security Protocol and Data Model 

• Based on USB security model + now used over various transports

• Provides:
• Asymmetric Crypto / x509 Certificate based device (or mutual) 

authentication.

• Signed measurements of device state (typically firmware running etc)

• Can establish a secure channel (symmetric crypto key exchange etc)

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0c.pdf



PCI / Component Measurement and 
Authentication (CMA)
• PCI ECN https://pcisig.com/specifications/pciexpress

• Data Object Exchange (DOE) protocol for SPDM via PCIe config space.
• Any function – including VFs

• Also basis of Integrity and Data Encryption (IDE) ECN
• May well be to hide that from the OS (DOE topic at plumbers)

• No hardware mediation of access, so software handling needed…

• CMA may also be in control of lower level software (TEE / other 
firmware) – but… There are use cases in kernel (Strong enough?)

• If in lower levels, firmware interface will be needed (separate topic!)

https://pcisig.com/specifications/pciexpress


What’s it for?

• Verification that the PCI EP is what you think it is.
• PCI Devices can be external (fake device attacks)

• May allow relaxation of security protections (bounce buffer, driver auditing reqs)

• Servers support hotplug and security model may include ‘within the case’ 
protections.

• VMs want to be sure devices assigned to them are what they think they are.
• Secure VMs may need to be sure PCI functions are what they think they are.

• May be firmware mediated…

• Verification that it is in the state you expect.
• Firmware changed – perhaps malicious?
• PCI device can support out of band firmware update (PLDM etc) Not always 

‘visible’ to the host.



Flows – Authentication:

1. Version negotiation

2. Capability negotiation
• Lots of optional stuff 

(measurements, mutual auth etc)

3. Negotiate Hash and 
Asymmetric Algs

4. Get Hash of Certificates (can 
avoid redownloading chain)

5. Get Certificate chain.

6. Issue a challenge.

DMTF 1.1 Specification

Assuming everyone knows 
basic 101 crypto..?



Authentication Subtleties

Authentication flow requires a ‘lot’ of state in 
host software

• One call to do whole flow

• State machine to allow for ‘short cuts’.

Algorithms not known until negotiated + EP 
must support at least one of several options.

• Challenge needs a digest (hash) of all of prior 
messages.

• Initially hash type not known.

• Current implementation caches message until 
hash known, then does running calculation

Certificates known?

• Either pre arranged availability 

• Root known by host, chain from that 
downloaded from EP

• Digest may allow use of cached certs
• Whilst quite big current usecases aren’t typically 

time critical so perhaps we won’t bother.

Done in RFC
Future Improvements



Not
Allowed

Certificate management

• Kernel already has key management framework (reuse!)

• Good for root certs and can be reused to check the chain 
from device.

• Oddity in SPDM – ECC signatures raw format, X509
typically ASN1
• Hack: Encode the Raw signature into ASN1 to pass to standard 

core code.

Questions:
• Probably safe to have single keyring for root certificates (_cma) 

– separate from other use cases (evm etc)
• Do we trust valid certs from other devices?  Seems inconsistent 

if a device is only ‘good’ because it’s root cert came from a 
different device – load order might matter?

• Proposal – per SPDM instance keychain (may need missing release 
infrastructure)

• Valid to use keychains for this?  Otherwise probably major refactor to 
expose keychain like functionality.
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1. Only allow certificates from an SPDM instance to 
be used verify certificates and signatures from 
that instance.

2. Only leaf certificate used for challenge_auth
verification.

Chains considered when checking signatures



Measurements?

• Form of measurements very flexible (can be raw binary).
• May need per device driver handling to know what matters…

• Information available on ‘when’ they are allowed to change.
• E.g. Static until cold reset (no point in rereading otherwise)

• If they were hashes would look like IMA (integrity management for files 
etc).  
• Nice to avoid reinventing the wheel.
• We could just hash raw values to hammer them into the hole.

• When to measure?
• Boot / driver probe or before (kind of obvious)
• Reset
• Polled / on driver driven events?



Questions

• What did I forget?

• Inputs needed from security folks…

• Question on layering and combinations of DOE to be addressed in 
plumbers DOE topic.


