SPDM/CMA

Linaro-open-discussions
15t September 2021 — Jonathan Cameron (Huawei Tech R&D UK)

Change log

2021/09/01: Added diagram for certificate management after LOD call.

Background (why are we talking about this?)

e [t was on the TODO list and we needed more evidence to back DOE
implementation choices.

* Raised lots of questions: Hence Plumbers microconf proposal...

e Kernel:
* https://lore.kernel.org/linux-pci/20210831135517.0000716f@Huawei.com/#t

* QEMU emulation (thanks to Avery Design)

* https://lore.kernel.org/gemu-devel/1624665723-5169-1-git-send-email-
cbrowy@avery-design.com/

* SPDM reference implementation https://www.github.com/dmtf

https://lore.kernel.org/linux-pci/20210831135517.0000716f@Huawei.com/#t
https://lore.kernel.org/qemu-devel/1624665723-5169-1-git-send-email-cbrowy@avery-design.com/
https://www.github.com/dmtf

DMTF - Security Protocol and Data Model

* Based on USB security model + now used over various transports

* Provides:

* Asymmetric Crypto / x509 Certificate based device (or mutual)
authentication.

» Signed measurements of device state (typically firmware running etc)
e Can establish a secure channel (symmetric crypto key exchange etc)

https://www.dmtf.org/sites/default/files/standards/documents/DSP0274 1.1.0c.pdf

PCl / Component Measurement and
Authentication (CMA)

* PCI ECN https://pcisig.com/specifications/pciexpress

* Data Object Exchange (DOE) protocol for SPDM via PCle config space.
* Any function — including VFs

* Also basis of Integrity and Data Encryption (IDE) ECN
* May well be to hide that from the OS (DOE topic at plumbers)
* No hardware mediation of access, so software handling needed...

 CMA may also be in control of lower level software (TEE / other
firmware) — but... There are use cases in kernel (Strong enough?)

* If in lower levels, firmware interface will be needed (separate topic!)

https://pcisig.com/specifications/pciexpress

What’s it for?

e Verification that the PCI EP is what you think it is.

* PCI Devices can be external (fake device attacks)
* May allow relaxation of security protections (bounce buffer, driver auditing reqs)

e Servers support hotplug and security model may include ‘within the case’

protections.

* VMs want to be sure devices assigned to them are what they think they are.

* Secure VMs may need to be sure PCl functions are what they think they are.
* May be firmware mediated...

* Verification that it is in the state you expect.

* Firmware changed — perhaps malicious?

* PCl device can support out of band firmware update (PLDM etc) Not always
‘visible’ to the host.

Flows — Authentication:

1. Version negotiation

2. Capability negotiation

* Lots of optional stuff
(measurements, mutual auth etc)

3. Negotiate Hash and
Asymmetric Algs

4. Get Hash of Certificates (can
avoid redownloading chain)

5. Get Certificate chain.
6. Issue a challenge.

Requester

If supported
4
e

If necessary
-

Assuming everyone knows
basic 101 crypto..?

Responder

GET VERSION
VERSION

I
GET CAPABILITIES —TI—
CAPABILITIES

NEGOTIATE ALGORITHMS
ALGORITHMS

i

T
GET_DIGESTS T|
DIGESTS

————GET CERTIFICATE :T'T
CERTIFICATE

ﬁ(—(‘HALLENGE_AUTH

-
|
|
|
|
iy
|
|

CHALLENGE m
I

DMTF 1.1 Specification

Authentication Subtleties e ovements

Authentication flow requires a ‘lot’ of state in Certificates known?

host software e Either pre arranged availability

* One call to do whole flow Root known by host, chain from that

e State machine to allow for ‘short cuts’. downloaded from EP
Algorithms not known until negotiated + EP * Digest may allow use of cached certs
must support at least one of several options. « Whilst quite big current usecases aren’t typically

time critical so perhaps we won’t bother.

* Challenge needs a digest (hash) of all of prior
messages.

* Initially hash type not known.

e Current implementation caches message until
hash known, then does running calculation

Certificate management

e Kernel already has key management framework (reuse!)

* Good for root certs and can be reused to check the chain
from device.

e Oddity in SPDM — ECC signatures raw format, X509
typically ASN1

e Hack: Encode the Raw signature into ASN1 to pass to standard
core code.

Questions:

* Probably safe to have single keyring for root certificates (_cma)
— separate from other use cases (evm etc)

* Do we trust valid certs from other devices? Seems inconsistent
if a device is only ‘good’ because it’s root cert came from a
different device — load order might matter?

* Proposal — per SPDM instance keychain (may need missing release
infrastructure)

* Valid to use keychains for this? Otherwise probably major refactor to
expose keychain like functionality.

Chains considered when checking signatures

_CMA Keychain

- cert -

SPDM1
Keychain

Intermed 1b Intermed 2b

Keychain

Leaf Cert 1 Leaf Cert 2

1. Only allow certificates from an SPDM instance to
be used verify certificates and signatures from

that instance.
2. Only leaf certificate used for challenge_auth

verification.

* Form of measurements very flexible (can be raw binary).
* May need per device driver handling to know what matters...

* Information available on ‘when’ they are allowed to change.
e E.g. Static until cold reset (no point in rereading otherwise)

e |f tl;ey were hashes would look like IMA (integrity management for files
etc).
* Nice to avoid reinventing the wheel.
* We could just hash raw values to hammer them into the hole.

* When to measure?
* Boot / driver probe or before (kind of obvious)
* Reset
e Polled / on driver driven events?

Questions

 What did | forget?
* Inputs needed from security folks...

* Question on layering and combinations of DOE to be addressed in
plumbers DOE topic.

