
Open-CMSIS-Pack
Technical Project Meeting 2021-10-12

This meeting is recorded !

Agenda

● Top-Level Concept and Requirements [Reinhard]

● ProjManager – demo first PoC implementation [Daniel B.]

● Review of ST concept - any feedback?

● Feedback on Handlebars

● Next steps

© 2021 Arm

Top-Level Concepts

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/6

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/6

4 © 2021 Arm

Arm Virtual Hardware

• Precise simulation models of Cortex-M
device sub-systems designed for complex
software verification and testing

• Runs any RTOS or bare metal code

• Provides virtual peripheral interfaces for I/O
simulation

• Enables test automation of diverse software
workloads, including unit, integration tests,
and fault injection

• Cloud service that can be integrated in
CI/CD and MLOps development flows

Arm VHT System
Corstone-300

Cortex-M55
• TrustZone
• Helium

Ethos-U55
microNPU

Memory
• Secure/

Non-secure
• DMA

Peripherals
• GPIO
• UART, SPI, I2C
• Ethernet

Virtual I/O
• Data values
• Streaming
• BSD-Socket

Debug Interface
• MDK, DS
• GDB
• Event Recorder

Developer
Resources

Arm AVT
Service

• I/O drivers

• Test scripts

• CI/CD integration

• Usage examples

• Test report tools

• Arm VHT Systems

• C/C++ Compiler

• Build utilities

5 © 2021 Arm

Workflow for CI: Develop Application Code or Test Cases
Flexible workflows addresses the needs of every developer

GitHub
Commit

Cloud flow with IDE in Browser Classic Tools on Desktop (MDK, DS)

Hardware Boards on your Desk Deploy to bespoke hardware

Commit triggers GitHub
Actions that starts CI using
Arm Compiler for build
and/or Virtual Hardware for
testing.

GitHub – Runners

Target HardwareEvaluation Board
MPS3 with

FPGA image

CI hosted in the Cloud

Test Results

All environments generate
Event Log files for off-line analysis

Develop Test cases

Arm Virtual
Hardware

Target

Simulation

6 © 2021 Arm

V
ir

tu
al

Ta
rg

et
User Application Code

FVP Platform for IoT/DSP/ML Software Development
V

ir
tu

al
La

ye
r

Events on changes
of LEDs

CMSIS-VIO
for Switches/LEDs

CMSIS-RTOS2

FreeRTOS, RTX, …

Python Interface:
- Script for Audio input

BSD-Socket

Socket Driver
VSocket

Demo or test
Interface

i.e. Voice
Recognition

Event Recorder

Application that connects to Internet via BSD-Socket

Audio Driver
VSI

Connection to the
Internet via Socket

Virtual Streaming
Interface (VSI)

This can is under full user
control and can service also

Video or Sensor data

Up to 8 VSI instances are
supported

Event Recorder
Capturing

Virtual Socket
Interface (VSocket)

In Windows
version this could also

map to user panel

Demo I/O Interface
(VIO)

By changing this layer
an application can be re-

targeted (Open-CMSIS-CDI)

7 © 2021 Arm

Cortex-M User Application

FVP/FM Streaming Peripheral Extension
First PoC implementation of Streaming Interface

CorStone-300
(or Cortex-M4)

Model

System C
Virtual Streaming

Interface
(System C Peripheral)

Python
Streaming
Interface

Audio Interface

Audio files

Audio
Peripheral

Driver

Algorithm
under
Test

In an example we provide the same Audio
Peripheral Driver API implemented on a real
microcontroller

Also, the Cortex-M side implements a flexible
streaming peripheral that can serve a wide
range of use cases. Initially we show audio.

The streaming peripheral is flexible
and allows to implement a wide
range of use cases. We show an
audio interface in the first example.

FVP Implementation for Linux and Windows

Test Script

8 © 2021 Arm

Types of Software Testing
Better quality faster, conforming to safety standards

• Unit Testing
• Test little chunks of code at a time
• Tested against your ‘test’ build

• Integration Testing
• Test whether two components work together when they are combined.

Verifies that the interface between them works properly
• Tested against your ‘test’ build

• System (Black-box) Testing
• Test that final system works as expected. Control external controls &

stimuli to system and measure response
• Tested against your ‘release’ build

• Regression Testing
• Suite of tests (unit & integration tests) & run continuously upon version

control updates.
• Used in Continuous Integration (CI)

9 © 2021 Arm

User Application
Code

Application Software – from Virtual to Physical Hardware
V

ir
tu

al
La

ye
r

IoT/ML Software
Platform

Provide evidence of correctness on Arm Virtual Hardware Target and Physical Hardware

Event Log file

User Application
Code

B
o

ar
d

La
ye

r

IoT/ML Software
Platform

Event Log file

Device SDK with
configuration

User Application
Code

Ta
rg

et
La

ye
r

IoT/ML Software
Platform

Event Log file

Device SDK with configuration

More Software

More DriversVirtual Drivers HW Drivers

Real I/O via test
equipment

Real I/O via
user peripherals

HW Drivers

Unit & Integration Testing on VHT or Physical Hardware Boards Deployment and System Testing on Production Hardware

Essentially the same event logs are generated across the different deployments. This ensures correctness.

Simulated I/O via
Python scripts
and stimuli files

10 © 2021 Arm

AMI that runs on
EC2 Linux instance

Run VHT on AMI – from GitHub actions

vht.yml
defines Run

Actions with Input
files

Log files

Arm VHT
Run Control

source files
*.axf / *.elf Files

Arm VHT
System

*.cprj build info
*.py Python
script files

Other Input files
(i.e. *.wav) Via GitHub secrets:

• instance_id
• access_key
• secret_key

vht_in

*.tar file

vht_out

*.tar file

name: 'Run Arm VHT on AMI'

description: 'Run one or more executable files on Arm Virtual

Hardware Targets'

inputs:

vht_in:

description: 'input tar file with vht.yml commands, executable

images, and input scripts'

required: true

instance_id:

description: 'instance id for connection'

required: true

default: ''

secret_key:

description: 'secret key for connection'

required: true

default: ''

access_key:

description: 'access key for connection'

required: true

default: ''

outputs:

vht_out:

description: 'output tar file with log files from Arm VHT

execution'

11 © 2021 Arm

cproject: Tool Flow for Project Generation
https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/12

*.rzone
Defines System

Resources

*.ctarget.yml
Defines Target

Application

*.cproject.yml
Defines Sub-

projects

Linker
Scripts

*.clayer.yml
Defines re-

usable project
parts

*.pack (DFP)
Defines Device

Properties

*.pack (BSP)
Defines Board

Properties

cproject:
CMSIS Project

Manager

*.cprj
CMSIS Build
Input Files

User modifiable with UX
and command-line tools:
*.yaml format with schema

Includes resource
assignments (currently in
*.azone files)

Project manager uses *.yml
files for configuration.

Optionally, template files
are used to generate Linker
Scripts and Other Helper
Files.

If *.rzone does not exist:
memory resource
information is taken
from DFP

Other Helper
Files

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/12

12 © 2021 Arm

Potential *.yml structure (simplified!)

groups:
files:

- references to source files

components:
- list of components

*.ctarget.yml *.cproject.yml *.clayer.yml

optional: board, device, vendor,
tool-chain (taken from *.ctarget)

options:
- CPU i.e. secure/non-secure
- global tool-chain options

groups:
files:

- references to source files

layers:
- references *.clayer.yml files

components:
- list of components

[board:] (optional)
device:
vendor:

tool-chain: compiler

options:
- global CPU options
- global tool-chain options

projects:
- references *.cproject.yml files

Feedback

● Handlebars: https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/32

○ Java Run-Time Environment (JRE) seems no longer an issue

○ Gap to FreeMarker is missing evaluation language

Next Steps:

● Add “Component – Tags/Classification” (request from NXP)

● Define Component Naming syntax for referring a component in script files, some early idea

○ Vendor::Cclass:Csub:Cname

○ Cclass:Csub:Cname@version

○ Cclass&bundle:Csub&variant:Cname&variant

● Next Open-CMSIS-Pack meeting: 19. Oct. 2021 @ 16:00

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack/issues/32

Thank you

