

QEMU Overview

Edgar E. Iglesias Principal Software Engineer April/19/2022

- QEMU Overview
- Co-simulation / Hybrid
- Plans
- Demos

QEMU Overview

Virtual Platform for SW developers

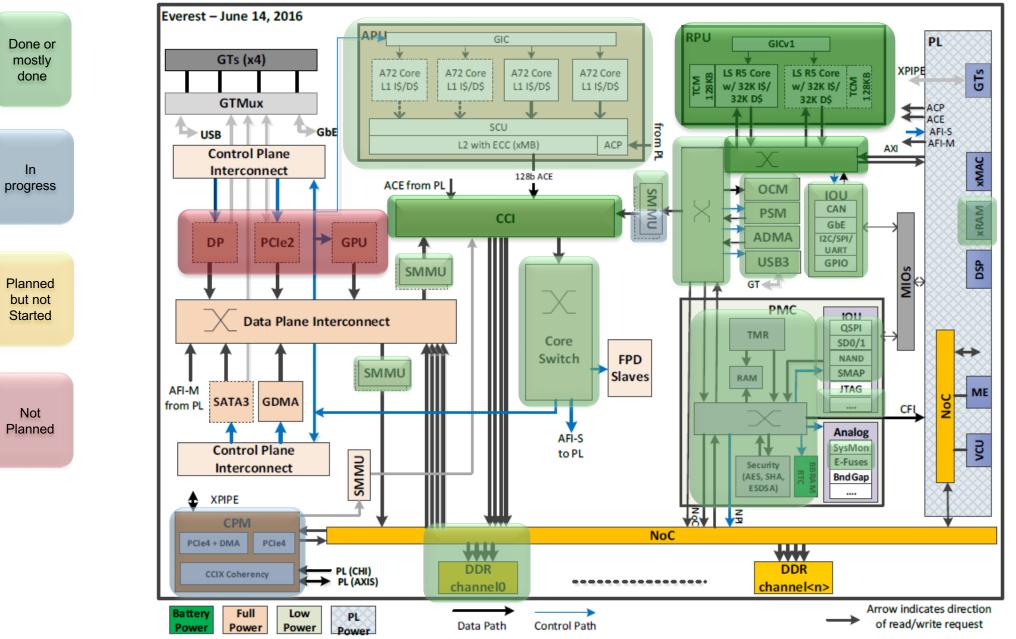
 Open-Source @Xilinx from 2009 Transaction level Debug & Profiling Co-simulation Value 	Scalable distribution & cost model, Popular in Open-Source community MicroBlaze, Power PC, ARM (Zynq, Zynq MPSoC, Versal), x86 Fast but not cycle accurate, Linux boot 2sec to user-space, 2min to prompt GDB/XSDB, traces, code-coverage and error-injection (-ve testing) SystemC/TLM-2, RTL and Hybrid Shift left (early SW development), Cost, Speed and Flexibility
Jsers	
InternalExternal	BootROM, System Software, SVT Petalinux, Vitis HW-Emulation, GitHub (Roll your own)
Success stories	
Zynq MPSoCDARPA/POSHCustomers/Vendors	Xilinx a significant contributor to ARMv8, MicroBlaze, RegAPI, Reset, Clocks etc Xilinx chosen for Open-Source QEMU Co-simulation efforts X (PetaLinux), Y (Github) and Z (Vitis)

EMU

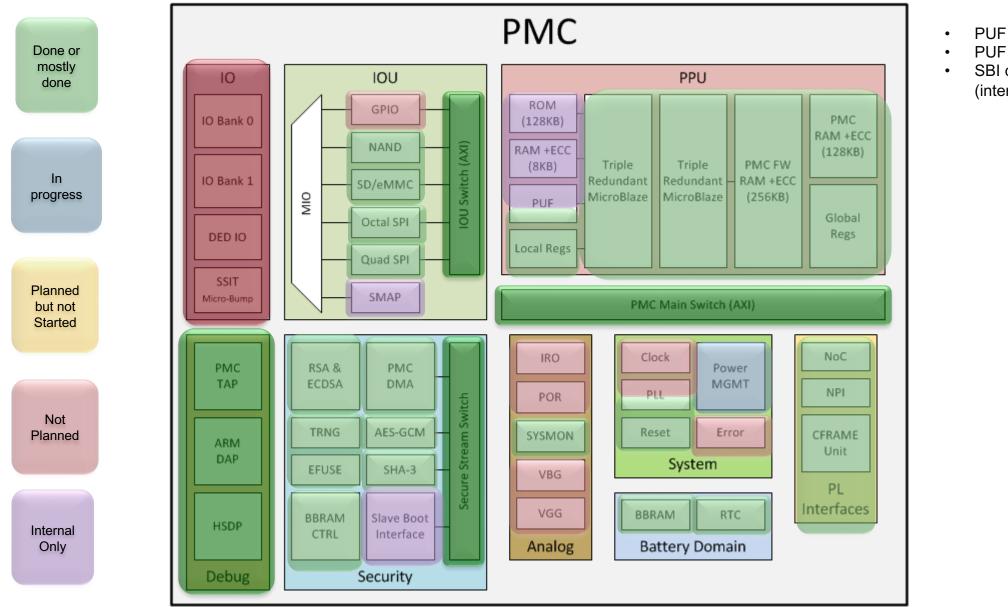
QEMU modes

System Emulation

- Emulation of full system (TCG)
 - Including Virtualization & Security, heterogenous cores, TZ, IOMMU's, XMPU's, PMU, PMC etc
 - DTB machines


Hypervisor KVM

- HW accelerated virtualization
- ZU+, Generic ARM virtual board
- x86 + PCIe co-simulation


Linux-user

- Cross-run Linux binaries (e.g ARM Linux binary on x86 Linux host)
- GCC test-suite, Cross-compilation, Rootfs testing

E XILINX.

- PUF Firmware model public
- SBI depends on BootROM (internal-only)

E XILINX.

QEMU System Emulation

Boot

- Full boot through BootROM (internal only)
- FSBL, U-boot & Linux direct boots

Security

- CSU, PMC-Secure, crypto blocks, EL3/TZ
- Secure-boot depends on BootROM images (internal)

QEMU System Emulation

Debuggers

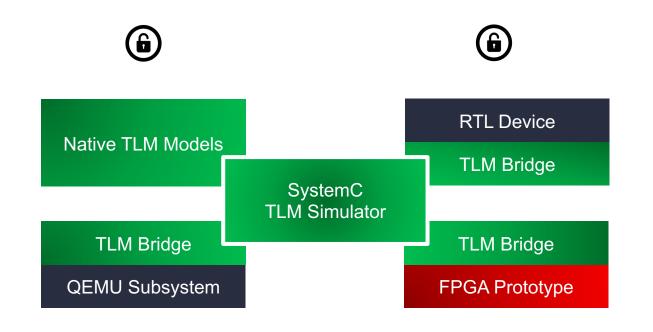
- GDB
- XSDB (PetaLinux, Vitis and Vivado)

Testing

- QTX Pytest based test-suite 500 cases
- TBM Baremetal test and exploration environment
- PetaLinux 500+ testcases, Vitis 500+ co-simulation test-cases

Tools

- Etrace tracing and code coverage
- Xregdb, irqmap-gen, memmap-gen Machine and model skeleton/generation

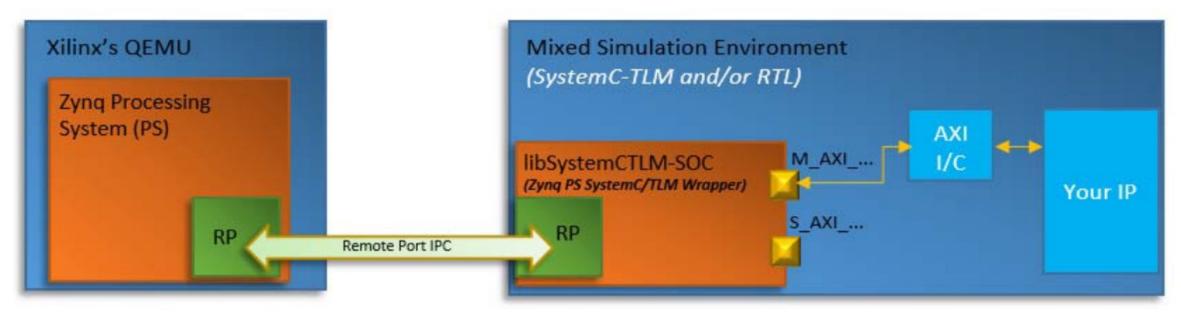

Co-simulation / Hybrid

Open Source Mixed Simulation Environment

LibSystemCTLM-SoC

https://github.com/Xilinx/libsystemctlm-soc

Based on Open-Source Projects



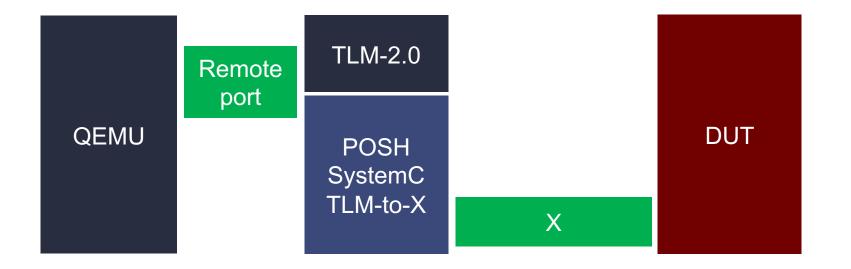
Phase 1a

Phase 1b

Xilinx Vivado/Vitis Co-sim

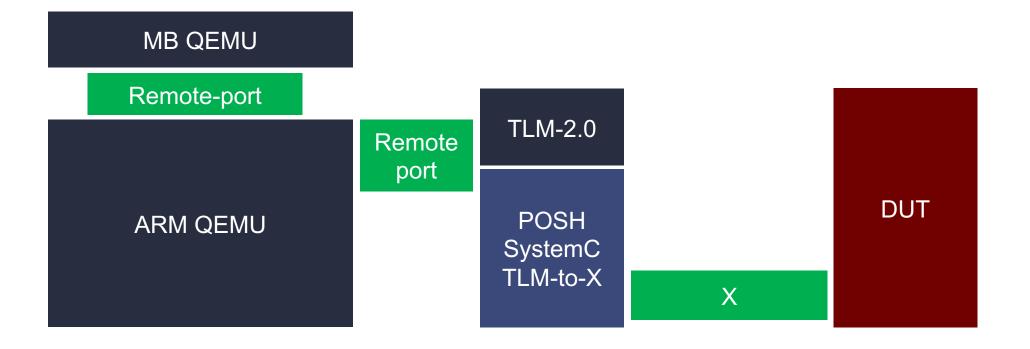
Unique Process

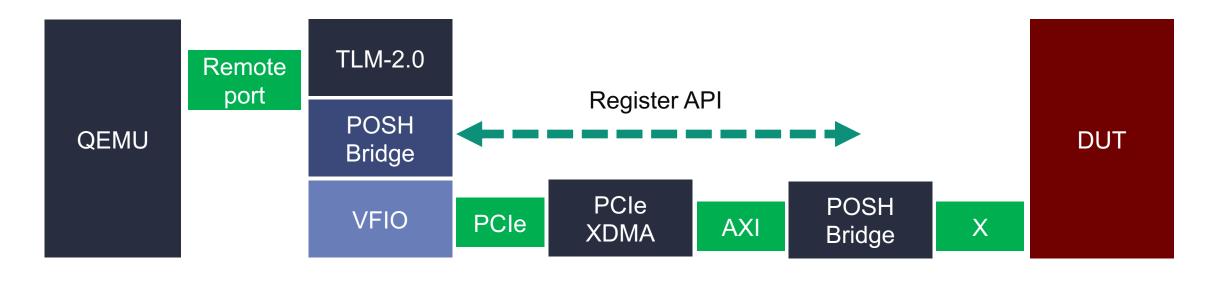
Xilinx's Remote Port


Xilinx's Zynq PS or PS SystemC/TLM Wrapper

Zynq PS – PL AXI Master/Slave Ports

Your IP(s)

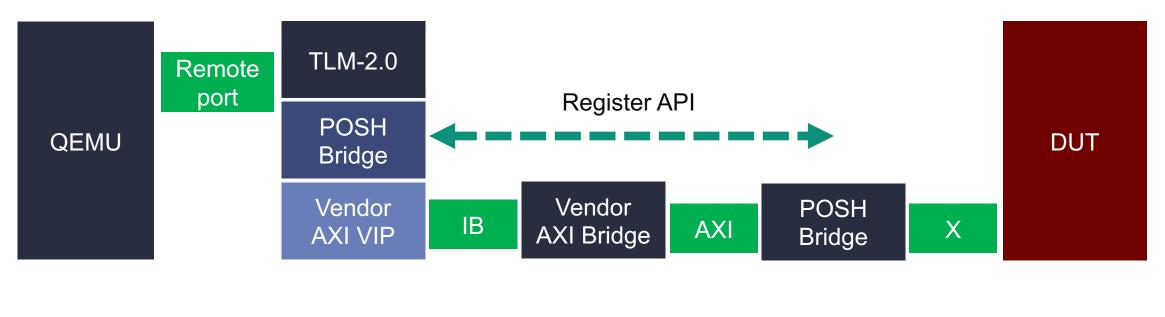

TLM2 bridges RTL simulation


QEMU heterogeneous

TLM2 bridges FPGA Prototyping

TLM2 bridges Emulator (Initial idea)

Pros: Fast, sort of "Vendor neutral" Cons: Not debug-portable, Licensing AXI VIP



TLM2 bridges Emulator

Pros: Vendor neutral, debug-portable Cons: Slow, Licensing AXI VIP

Plans around QEMU upstream

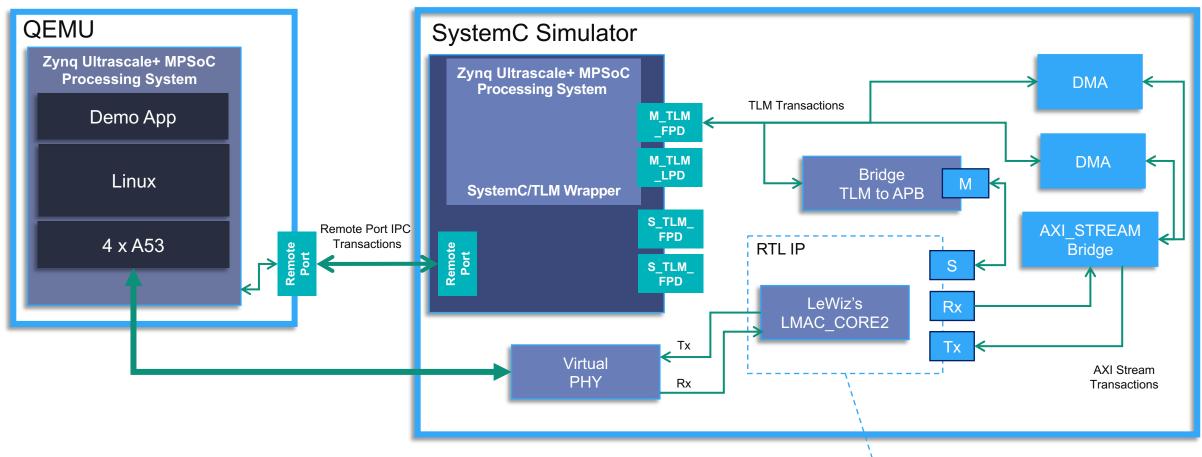
Upstream	Heterogenous CPUs Done	Heterogenous CPUs Needed

CPUs	MicroBlaze	ARMv8 (EL2, EL3)	PPC 440 BookE	MIPS (R32 SMP, SMT), CRIS	MTTCG, Per CPU AS	CPU Clusters, GDB Multi- process	Heterogenous CPU build and instance support (submitted)
Interrupt controllers	Xilinx Intc	GICv2 (Virt), ZynqMP IPI	PPC XInx Intc	EtraxFS PIC		Multiple GICs	
Peripherals	Xilinx UARTs, Cadence UART, DMA, Display	SPI, QSPI, Octal SPI, m25p80, NAND	SDHCI, eMMC, AHCI Sysbus	USB Sysbus, ZynqMP, Versal	Ethernet (MACb, Ethlite, AXI eth), EtraxFS, MDIO, PHYs	PMU, PMC. PSM devices	
Frameworks	Register API	Clock API	Reset API	Named GPIOs/Interrup ts	Streaming API	Generic CPU reset & halt (GPIO based)	
Machines	Zynq, ZynqMP, Versal, PetaLinux MB, Virtex ML507 etc	Versal Cortex-A72 + Cortex-R5F CRL (Dynamic wake-up of RPU)	QMP driven machines (ongoing), DTB driven	ZynqMP, Versal Cortex-R5F GIC, IPI connections	PMU, PMC, PSM subsystems		

Programs

Pre tape-out

Post tape-out


Pre-RTL	RTL Emnulation and FPGA Prototyping	Internal/Not public	Public
QEMU is the only platform SSW Bring-up BootROM development Arch exploration Prep for Emu and Proto Boot Firmware, TF-A, U-boot, Xen, Linux	Migration towards RTL QEMU still used due to productivity gains (turnaround speed) and due to RTL development lag CI loops SW/HW/QEMU More complex SSW setups	Prep for VnC Integrate into PetaLinux, Vitis, Vivado Prep for upstreaming	Open-Source community Early-Access programs Customer support Plans 2022.2: QEMU upstream: Versal eMMC Versal SSS and SHA Versal CAN-FD M25p80 Octal SPI offchip dev ZynqMP Display-Port fixes ZynqMP USB minor alignments ZCU102 i2c clock-devs ZCU102 DDR SODIMM SPD QMP machines (GreenSocs) LibsystemctIm-soc: PCIe core (TLP level) TLM Versal PCIe end-point model including PS/PMC

Demo

E XILINX.

DARPA/POSH

Main Lessons Learnt

- Need Backend connections to the RTL/TLM to feed in real data
- Need for AXI Stream and APB Protocols
- Need to standardize on a particular set of protocols....AXI, Wishbone?
- Successfully identified bug in IP RTL during integration !

LeWiz Communications Ethernet MAC Core2 10G/5G/2.5G/1G

https://github.com/lewiz-support/LMAC_CORE2

XILINX

Thank You

