
Radvajesh M

Sr Staff Engg

CAN Bus Virtualization

Location:BangaloreDate: 10 May 2022 rmunibyr@qualcomm



2

• CAN Introduction

• Typical CAN Deployment on Linux

• Need for Virtualization

• Choice for VirtIO CAN

• Early View of Virto CAN

• Early View of Virto CAN with Auto SAR

Agenda



3

Image Ref:Image ref: https:/ / www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html

CAN Introduction
A Controller Area Network (CAN bus):

Is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's 

applications without a host computer. It is a message-based protocol.

In 1983 Bosch published several versions of the CAN specification and the latest is CAN 2.0 published in 1991. Bosch is still

active in extending the CAN standards. In 2012, Bosch released CAN FD 1.0 or CAN with Flexible Data-Rate. These 
standards are freely available from Bosch along with other specifications and white papers

In 1993, the International Organization for Standardization (ISO) released the CAN standard ISO 11898, The physical layer 

standards ISO 11898-2 and ISO 11898-3 are not part of the Bosch CAN 2.0 specification. These standards may be 
purchased from the ISO.

https://www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol
https://en.wikipedia.org/wiki/CAN_FD
https://en.wikipedia.org/wiki/White_papers
https://en.wikipedia.org/wiki/International_Organization_for_Standardization


4Source sample text

CAN Bus working Introduction



5Source: https:/ /medium.com/ @xesey/listening-vehicle-communication-with-socket-can-8545e0241fa

Typical CAN Deployment



6Source sample text

CAN Features
• Support Classical CAN TX/RX 

• Standard ID:11 ID, 5 CTRL, 8 byte Data)

• Extended ID (29 ID, 8 CTRL, 8 byte Data)

• Support for CAN FD (64 bytes data)

• Data BitRate: 2Mbps 

• Arbitration configurable upto 1Mbps

• Support to Add Filters for RX

• Support for Early CAN Buffering

• Support for Time Stamping CAN Frames

• Error Handling



7Source sample text

Need for Virtualization

• Virtualize CAN bus, so that multiple VMs can participate in CAN bus transactions as if each VM is directly 
connected to physical CAN bus 

• Chief motivation - Reduce electronics/cost, simplify

• Challenges – CAN bus arbitration, broadcast, performance/latency requirement



8Source sample text

CAN bus virtualization – Option 1

CAN Controller H/w

Socket CAN

CAN 
Application

VMM

Virtio-CAN Controller Driver

CAN Application

Virtio Channel

• CAN application in guest VM to use standard CAN API provided by guest OS

• Virtio-CAN specification needs to be developed in this scenario

Host/Primary VM Guest VM

Socket CAN
(Vhost) Virtio-
CAN Backend 

Driver

CAN Controller Driver (Queue, 
Mailboxes)



9Source sample text

CAN bus virtualization – Option 2

CAN Controller H/w

Socket CAN

CAN 
Application

Virtual CAN 
Server

CAN Application

Vsock/IPC channel

CAN application in guest VM to use custom IPC API to communicate with a Virtual CAN server

Virtio-CAN specification NOT needed in this case. Standardize the IPC communication?

Host/Primary VM

Guest VM

Virtual CAN Client

CAN controller driver



10Source sample text

Virtio CAN – Prior Work

• RFC posting on virtio-dev by Open synergy
• Does not support some features like filtering, timestamping, …

• Xvisor implementation
• Virtio-backend in hypervisor

Source: https:/ /hal.archives-ouvertes.fr/ hal-01291895/document

https://markmail.org/message/kdvw5d47vxngmo44?q=virtio-can+list:org%2Eoasis-open%2Elists%2Evirtio-dev
https://hal.archives-ouvertes.fr/hal-01291895/document


11Source sample text

BACK UP



12Source: https:/ /www.researchgate.net/publication/271417105_An_Embedded_Hypervisor_for_Safety-Relevant_Automotive_EE-Systems

Early View of VirtIO CAN on AutoSar



13Source: https:/ /autosartutorials.com/ tag/autosar-can-stack/

AutoSAR CAN Stack



14Source: https:/ /www.embitel.com/ blog/embedded-blog/decoding-the-component-concept-of-the-application-layer-in-autosar

AUTOSAR Virtual Bus



15

Source: https:/ /hal.archives-ouvertes.fr/ hal-01291895/document

Early View of VirtIO CAN

PRIMARY VM/ 
HOST/HYPERVISOR



16Source sample text

Choice for VirtIO CAN
As CAN resources are shared, direct hardware access, namely passthrough, cannot be used. This would give 
all guests the complete access to the same hardware and registers in particular. A guest could then overwrite 
the controller configuration or the data set by another guest. In addition, it may perform conflicting operations 
that cause errors. In the worst case, it may render the whole controller or system unsusable. Thus, direct 
hardware access can only be used for exclusive hardware access from one system, either the host or one 
guest.

The guest high level (userland) certified softwares must remain the same. Thus, the interface for the CAN must 
not change, i.e. it has to present a SocketCAN compatible driver for LINUX guests

We choose to use VirtIO for CAN interface virtualization for three reasons. On the one side, VirtIO defines a 
clear and flexible API with well defined and optimized transport abstractions, that fit our needs. On the other 
side, VirtIO API is becoming the virtualization standard for host-guest communication interface


