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CAN Introduction

A Controller Area Network (CAN bus):

Is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's

applications without a host computer. It is a message-based protocol.

In 1983 Bosch published several versions of the CAN specification and the latest is CAN 2.0 published in 1991. Bosch is still
active in extending the CAN standards. In 2012, Bosch released CAN FD 1.0 or CAN with Flexible Data-Rate. These
standards are freely available from Bosch along with other specifications and white papers

In 1993, the International Organization for Standardization (ISO) released the CAN standard ISO 11898, The physical layer

standards ISO 11898-2 and ISO 11898-3 are not part of the Bosch CAN 2.0 specification. These standards may be

purchased from the ISO.

Without CAN

With CAN
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https://www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol
https://en.wikipedia.org/wiki/CAN_FD
https://en.wikipedia.org/wiki/White_papers
https://en.wikipedia.org/wiki/International_Organization_for_Standardization

CAN Bus working Introduction
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Typical CAN Deployment
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CAN Features

« Support Classical CAN TX/RX

Standard ID:11 ID, 5 CTRL, 8 byte Data)
Extended ID (29 ID, 8 CTRL, 8 byte Data)
«  Supportfor CAN FD (64 bytes data)

. Data BitRate: 2Mbps

. Arbitration configurable upto TMbps

* Supportto Add Filters for RX

« Supportfor Early CAN Buffering

« Supportfor Time Stamping CAN Frames
« Error Handling



Need for Virtualization

Virtualize CAN bus, so that multiple VMs can participate in CAN bus transactions as if each VM is directly
connected to physical CAN bus

« Chief motivation - Reduce electronics/cost, simplify

« Challenges - CAN bus arbitration, broadcast, performance/latency requirement



CAN bus virtualization - Option 1

Host/Primary VM Guest VM

Ap;ﬁ\:gﬁon CAN Application
(Vhost) Virtio-
Socket CAN CAN Backend Socket CAN
Driver o
Virtio Channel

CAN Controller Driver (Queue, Virtio-CAN Controller Driver

Mailboxes)

CAN Controller H/w

« CAN applicationin guest VM to use standard CAN API provided by guest OS

» Virtio-CAN specification needs to be developed in this scenario

Source sample text



CAN bus virtualization - Option 2
Guest VM

Host/Primary VM
CAN Application
CAN Virtual CAN

Server P Vsock/IPC :hannel

Application

Virtual CAN Client

Socket CAN

CAN controller driver

CAN Controller H/w

CAN applicationin guest VM to use custom IPC APl to communicate with a Virtual CAN server

Virtio-CAN specification NOT needed in this case. Standardize the IPC communication?

Source sample text



Virtio CAN - Prior Work

» RFC posting on virtio-dev by Open synergy

* Does not support some features like filtering, timestamping, ...

» Xvisor implementation
« Virtio-backend in hypervisor

Source: https://hal.archives-ouvertes.fr/ hal-01291895/document

Source sample text
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https://markmail.org/message/kdvw5d47vxngmo44?q=virtio-can+list:org%2Eoasis-open%2Elists%2Evirtio-dev
https://hal.archives-ouvertes.fr/hal-01291895/document
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Early View of VirtlO CAN on AutoSar
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AutoSAR CAN Stack
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AUTOSAR Virtual Bus
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Early View of VirtlO CAN
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Choice for VirtlO CAN

As CAN resources are shared, direct hardware access, namely passthrough, cannot be used. This would give
all guests the complete access to the same hardware and registersin particular. A guest could then overwrite
the controller configuration or the data set by another guest. In addition, it may perform conflicting operations
that cause errors. In the worst case, it may render the whole controller or system unsusable. Thus, direct
hardware access can only be used for exclusive hardware access from one system, either the host or one
guest.

The guest high level (userland) certified softwares must remain the same. Thus, the interface for the CAN must
not change, i.e. it has to presenta SocketCAN compatible driver for LINUX guests

We choose to use VirtlO for CAN interface virtualization for three reasons. On the one side, VirtlO defines a
clear and flexible APl with well defined and optimized transport abstractions, that fit our needs. On the other
side, VirtlO APl is becoming the virtualization standard for host-guest communication interface



