Date: 10 May 2022 Location:Bangalore rmunibyr@qualcomm

CAN Bus Virtualization

Radvajesh M
Sr Staff Engg

Agenda

CAN Introduction

Typical CAN Deployment on Linux
Need for Virtualization

Choice for VirtlO CAN

Early View of Virto CAN

Early View of Virto CAN with Auto SAR

CAN Introduction

A Controller Area Network (CAN bus):

Is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's

applications without a host computer. It is a message-based protocol.

In 1983 Bosch published several versions of the CAN specification and the latest is CAN 2.0 published in 1991. Bosch is still
active in extending the CAN standards. In 2012, Bosch released CAN FD 1.0 or CAN with Flexible Data-Rate. These
standards are freely available from Bosch along with other specifications and white papers

In 1993, the International Organization for Standardization (ISO) released the CAN standard ISO 11898, The physical layer

standards ISO 11898-2 and ISO 11898-3 are not part of the Bosch CAN 2.0 specification. These standards may be

purchased from the ISO.

Without CAN

With CAN

Image Ref:Image ref: htip

https://www.ni.com/en-in/innovations/white-papers/06/controller-area-network--can--overview.html
https://en.wikipedia.org/wiki/Vehicle_bus
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Host_computer
https://en.wikipedia.org/wiki/Message-based_protocol
https://en.wikipedia.org/wiki/CAN_FD
https://en.wikipedia.org/wiki/White_papers
https://en.wikipedia.org/wiki/International_Organization_for_Standardization

CAN Bus working Introduction

Transceiver

CAN-H

CPU

CAN

| controller

CAN
500 kbps

AR .

CAN-L

Transceiver
+—— CAN-H

ABS

ETM

TCM

CAN-L
1
node-1:.| i e = node n
| S—
DMM
CAN J§
120 ‘-eD CAN Bus Line D 120 Q
i CAN L |
CCM
DIM
SR Y
CAN
125 kbps

Source sample text

ECM

Typical CAN Deployment

Socket Layer

(.
Protocol Family

CAN]{ Internet

Protocol FomilyJ

Network Device Drivers

)

Kernel
Space

Character
Device
Driver

) Hardware (CAN Controller]

1 |

: CAN Node i

g s

i | Microcontroller i

| I

i i (v

| NS R 9

i Controller i Data Link Layer % \

' 1 ISO 11898-1

i ¥ A E AR A e | \)Z>

' CAN ! Medium Access Unit

E Transceiver i (Electrical Levels)

T — 1180118982, 3 (
T\

Bus

®

Source: https:/ /medium.com/ @xesey!/ listening-vehicle-communication-with-socket-can-8545e024 1fa

CAN Controller

CAN Features

« Support Classical CAN TX/RX

Standard ID:11 ID, 5 CTRL, 8 byte Data)
Extended ID (29 ID, 8 CTRL, 8 byte Data)
« Supportfor CAN FD (64 bytes data)

. Data BitRate: 2Mbps

. Arbitration configurable upto TMbps

* Supportto Add Filters for RX

« Supportfor Early CAN Buffering

« Supportfor Time Stamping CAN Frames
« Error Handling

Need for Virtualization

Virtualize CAN bus, so that multiple VMs can participate in CAN bus transactions as if each VM is directly
connected to physical CAN bus

« Chief motivation - Reduce electronics/cost, simplify

« Challenges - CAN bus arbitration, broadcast, performance/latency requirement

CAN bus virtualization - Option 1

Host/Primary VM Guest VM

Ap;ﬁ\:gﬁon CAN Application
(Vhost) Virtio-
Socket CAN CAN Backend Socket CAN
Driver o
Virtio Channel

CAN Controller Driver (Queue, Virtio-CAN Controller Driver

Mailboxes)

CAN Controller H/w

« CAN applicationin guest VM to use standard CAN API provided by guest OS

» Virtio-CAN specification needs to be developed in this scenario

Source sample text

CAN bus virtualization - Option 2
Guest VM

Host/Primary VM
CAN Application
CAN Virtual CAN

Server P Vsock/IPC :hannel

Application

Virtual CAN Client

Socket CAN

CAN controller driver

CAN Controller H/w

CAN applicationin guest VM to use custom IPC APl to communicate with a Virtual CAN server

Virtio-CAN specification NOT needed in this case. Standardize the IPC communication?

Source sample text

Virtio CAN - Prior Work

» RFC posting on virtio-dev by Open synergy

* Does not support some features like filtering, timestamping, ...

» Xvisor implementation
« Virtio-backend in hypervisor

Source: https://hal.archives-ouvertes.fr/ hal-01291895/document

Source sample text

Guest system 1 Guest system 1
| Application | [Application |
y Virtio y Virtio
[VirtlO-CAN_| [VirtlO-CAN]
| 7 H:ﬂmo] Hypervisor (host)
| VirtlO-CAN |

)
Virtual-mailboxes VirtCAN
Virtual-queues |-n—-___\‘

Driver

A

CAN controller

Real hardware

Fig. 9. System design

https://markmail.org/message/kdvw5d47vxngmo44?q=virtio-can+list:org%2Eoasis-open%2Elists%2Evirtio-dev
https://hal.archives-ouvertes.fr/hal-01291895/document

BACK UP

Early View of VirtlO CAN on AutoSar

WM-P artition 1

VM-Partition 3

Corel

Corel

swe| swe| swe Powertrain Application
[swe] swe swe] PP
e

A untime Environment

Basic Software

e

!—|;.rpe rvisor
End
!.-’DEs

i
¥

ettt

Source: https:/ /www.researchgate.net/ publication/271417105_An_Embedded_Hypervisor_for_Safety-Relevant_Automotive_EE-Systems

AutoSAR CAN Stack

Application Layer

Communication
Services

CAN
State
Manager

Runtime Environment (RTE)

Sy stem Memory Crypto Oft-board j§ Comm 1/0 CAN Transport

Protocol

Services W Services | Services fj Comm Services N Hardware
Seryices Abstraction

Onboard ~ [f Memory jf Crypto Wireless | Comm CAN Interface
device Hardware § Hardware J Comm HW J§ Hardware — , —

: : ; ') ; CAN Transceiver Driver for external
Abstraction |§ Abstraction [l Abstraction l§ Abstraction|§ Abstraction Driver CAN ASIC

MCU § Memoryf Crypto Wirless ¥ Comm §1/0 1/0 Drivers Communication Drivers

: . : Comm : .
Drivers § Drivers § Drivers § pere fDrivers § Drivers - - CAN Driver

Microcontroller

External
CAN Controller

Source: https://autosartutorials.conv tag/ autosar-can-stack/

AUTOSAR Virtual Bus

Intra- and inter-ECU Communication

ECUI ECUlI MW hides the
Appli- Appli- Appli- . : .
caton citon B Sonfichion distribution
A B [and the
________________________ characteristics
v Ports of the HW
o Fl e
platform
VFB
e R | AUTOSAR
i i i Infrast t .
:asw: : BSW : : rrastracture Compllance:
===1 SW-C must
| || LI |
v : | haraware ONly call entry
| B s s w0 s s 4 D 1 1 | Sensor L .
T oo e u points in the
Communication Bus RTE
------ Communication Path

Source: https:/ /www.embitel.com/ blog/embedded-blog/ decoding-the-component-concept-otf-the-application-ayer-in-autosar

Early View of VirtlO CAN

Guest system 1
| Applicabon
&

¥ WO
Wt O—C AR

Gusst system 1

| Applicabon
&

¥ WO

VIrEIo-C AN

WVirmo
VIrtlo-camM |

PRIMARY VM/
HOST/HYPERVISOR

Virbual-mailboxes

;

wWirblal-gueuss

Cirreer

%"“

Source: https://hal.archives-ouvertes.fr/ hal-01291895/document

Choice for VirtlO CAN

As CAN resources are shared, direct hardware access, namely passthrough, cannot be used. This would give
all guests the complete access to the same hardware and registersin particular. A guest could then overwrite
the controller configuration or the data set by another guest. In addition, it may perform conflicting operations
that cause errors. In the worst case, it may render the whole controller or system unsusable. Thus, direct
hardware access can only be used for exclusive hardware access from one system, either the host or one
guest.

The guest high level (userland) certified softwares must remain the same. Thus, the interface for the CAN must
not change, i.e. it has to presenta SocketCAN compatible driver for LINUX guests

We choose to use VirtlO for CAN interface virtualization for three reasons. On the one side, VirtlO defines a
clear and flexible APl with well defined and optimized transport abstractions, that fit our needs. On the other
side, VirtlO APl is becoming the virtualization standard for host-guest communication interface

