
© 2022 Arm

CMSIS Team

23. Aug 2022

Open-CMSIS-Pack
Technical Review Meeting

© 2022 Arm

Introducing Layers
Current Examples that use Layers

Provide Layers from Board Support Packs (or other Packs)
Examples that uses TF-M with Boot Loader
Issues with the RTE Folder when using Layers

© 2022 Arm3

Csolution Examples

AWS_MQTT_MutualAuth_Demo
Target-Types

• IP-Stack: uses TCP/IP Stack connected via CMSIS-Driver Ethernet

• WiFi: uses TCP/IP CMSIS-Driver WiFi

• AVH: uses IoT-Socket (Vsocket on Arm Virtual Hardware)

All have a shim-layer to AWS “iot-secure-sockets”

Each of the Target-Types is also mapped to hardware, right now:

• IP-Stack: compatible with CMSIS-Driver Ethernet

• WiFi: compatible with CMSIS-Driver WiFi

• AVH: compatible with IoT-Socket

https://github.com/Open-CMSIS-Pack/csolution-examples

layers:

- layer: ./Board/IMXRT1050-EVKB/Board.clayer.yml

for-type:

- +IP-Stack

- layer: ./Board/B-U585I-IOT02A/Board.clayer.yml

for-type:

- +WiFi

- layer: ./Board/AVH_MPS3_Corstone-300/Board.clayer.yml

for-type:

- +AVH

How can layers come from Board Support Packs (BSP)

• Reference Code Examples can pick-up the right layer BSPs

• Multiple pre-configured layers can be provided to support typical use cases

• Selection could depend on open component requirements or required interfaces

Potential YML solutions:

• Would require user interaction to copy the right layer and modify cproject.yml

• IDE (or alternative tool) could support this interaction

• Gives more control to the user; sharing multiple layers between projects

• With RTE-Folder proposal (slide 5) it allows multiple layers (i.e. for processor 1 and
processor 2 in case of ASP) to share a common set of configuration files.

Alternative (more automatic but perhaps in-transparent) solution is shown on next
slide.

layers:

- layer-template: board-IoT # works with layer
interfaces:
- consumes:
- api: CMSIS Driver:USART // can be automatic
- Heap: 65536

https://github.com/RobertRostohar/Demo_EW/tree/main/AWS_MQTT_MutualAuth_Demo
https://github.com/Open-CMSIS-Pack/csolution-examples

© 2022 Arm4

Example Project: Cloud Connector using MCUBoot and TF-M
Security and Firmware Update for TrustZone enabled Devices

Architecture

User Application

PSA
Interface

AWS
FreeRTOS

AWS MQTT/OTA client

Device/Board Abstraction

TF-MMCUBoot

Board
Interface

Platform
Interface

Bootloader Secure Non-secure Application

target-types:
- type: AVH # simulated target for CI testing
board: AVH-CM33 # Arm Virtual Hardware Cortex-M33 board

- type: Board
board: B-U585I-IOT02A # STM32U5 Test Board

- type: Custom # simulated target for CI testing
device: STM32U575RG # device in custom hardware

projects:
- project: myCloudApp.cproject.yml
- image: {psa&tfm} # pre-build image, target-specific
- project: {mcuboot} # target-specific project

MyApplication.csolution.yml

layers:

- layer: interface.clayer.yml
- layer: {board} # target-specific board interface
not-for-type: .Custom

- layer: myHardware.clayer.yml
for-type: .Custom

{name&variant} are copied from software packs to the project

myCloudApp.cproject.yml

AVH-CM33 BSP/DFP
{psa&tfm} image
{mcuboot} project
{board} layer

Software Packs for Device/Board

STM32U5 DFP
{psa&tfm} image
{mcuboot} project

B-U585-IOT02A BSP
{board} layer
{mcuboot-board} layer

Read more on Open-CMSIS-Pack-Spec: Add <csolution> element to *.PDSC format

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack-Spec/issues/134

© 2022 Arm5

RTE Folder – Local Configuration for Layers?
Configuration Files for Components

Current: All Config Files share same RTE

./RTE/

Board_Support/MIMXRT1052DVL6B

Board_Support/STM32U565AIIx

Compiler/

CMSIS Driver/STM32U565AIIx

CMSIS Driver

Device/MIMXRT1052DVL6B

Device/STM32U565AIIx

Device/SSE-300-MPS3

RTE Self-Contained in Layer

Issues

• Potential conflicts when layers use different configurations

• Unclear how to remove a layer including related config files

RTE Benefits

• Support for Product Life Cycle management

• Component configuration has a central place

layer: // preferred solution by RK
RTE-paths:

- Board_Support: <local-path>
- Compiler: <local-path>
- CMSIS Driver: <local-path>
- Device: <local-path>

<local-path>

• Relative to clayer.yml

• Makes component classes managed by a layer obvious

• Layers can be shared with multiple projects

layer: // alternative solution
RTE:
path: <local-path>
component-classes:
- Board_Support
- Compiler
- CMSIS Driver
- Device

https://github.com/RobertRostohar/Demo_EW/tree/main/AWS_MQTT_MutualAuth_Demo/RTE

Confidential © 2022 Arm

Pack Generation
Start to engage with wider Industry
Pack Generation Examples

Common Device Interfaces, where to start

• IoT-Socket, PSA

• What’s wrong with CMSIS-Driver

CI System for Validation of Software Stacks

7 Confidential © 2022 Arm

Pack Generation Examples

github.com/MDK-Packs/IoT_Socket - Native Pack project, PDSC file manually created
• IoT-Socket interface that is proposed in Open-CMSIS-CDI, during development, the repository can be directly accessed as pack (using cpackget)

• CMSIS utilities are used to validate the creation (XML schema check, PackChk), gen_pack.sh script is used to create the final pack

• Distribution of public packs uses a separate github repository (github.com/MDK-Packs/Pack)

• Pack Index file gives a vendor full control over the pack publishing process

github.com/lvgl/lvgl/tree/master/env_support/cmsis-pack - Graphic Library that uses gen_pack.sh

• PDSC file is created and maintained manually

https://github.com/MDK-Packs/tensorflow-pack - TFLu project + Arm ML components

• Pack generation (PDSC file) is automated with Python scripts and derived from the underlying open-source projects.

https://github.com/FreeRTOS/CMSIS-Packs - AWS FreeRTOS packs (created from CMake based projects)

• Pack generation (PDSC file) is automated PackGen and manifest.yml file

How packs are generated in practice

https://github.com/MDK-Packs/IoT_Socket
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/cpackget/docs/cpackget.md#install-a-repository
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/bash_script.html
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/bash_script.html
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/createPackPublish.html
https://github.com/MDK-Packs/Pack
https://github.com/MDK-Packs/Pack/blob/master/MDK-Packs.pidx
https://github.com/lvgl/lvgl/tree/master/env_support/cmsis-pack
https://github.com/MDK-Packs/tensorflow-pack
https://github.com/FreeRTOS/CMSIS-packs
https://github.com/FreeRTOS/CMSIS-Packs
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/packgen/docs/packgen.md

8 Confidential © 2022 Arm

Implementation #3Implementation #2

Software
component

Central
API definition

CDI-Pack: Central API Interface definition in CMSIS-Pack format
Ensuring consistent interfaces and naming taxonomy across the industry

• Organizes the taxonomies of standard APIs that are
essential for re-useable software stacks

• Solves a common problem: API headers evolve over
time.

A central API definition shares header file and documentation of
an API interface across multiple other software components to
ensure consistency.

The API interface is distributed separate or as part of the software
component that defines this interface. The API header file is
therefore consistent.

An example is the CMSIS-Driver pack that contains various
Ethernet and Flash drivers – all compatible with the CMSIS-Driver
APIs that are published in the CMSIS Pack.

API headers

Source code/
libraries

Interfaces

API headers
(Definition)

Implementation #1

Source code/
libraries

Source code/
libraries

Source code/
libraries

Documentation
of API

http://arm-software.github.io/CMSIS_5/Pack/html/pdsc_apis_pg.html
http://arm-software.github.io/CMSIS_5/Pack/html/cp_SWComponents.html#cp_API
http://arm-software.github.io/CMSIS_5/Pack/html/cp_SWComponents.html#cp_API
https://github.com/ARM-software/CMSIS-Driver

9 Confidential © 2022 Arm

Development Workflow (exemplified with GitHub)
github.com/ARM-software/AVH-GetStarted

1. Local development: use a classic embedded toolchain such as Keil MDK and with Arm Virtual Hardware Target for MCU simulation.
A GitHub repository is used as a source code management system for synchronization, storage and version control.

2. CI pipeline setup: a GitHub Action implements the CI pipeline that gets triggered on every code update in the target repository.

3. CI execution: automated program build and testing with cloud-based Arm Virtual Hardware; results reported back to repository.

4. Failure analysis and local debug: developer can observe the CI test results. Failures can be reproduced and debugged locally.

Code
Repository

CI Pipeline

Code update Start CI

Build Test Results

Arm Virtual Hardware –Cloud Service

Return CI resultsObtain CI results

https://github.com/ARM-software/AVH-GetStarted

10 Confidential © 2022 Arm

Arm Virtual Hardware (AVH) at AWS Marketplace
Complete software toolset with AVH Fast Models for Corstone and Cortex-M CPUs

• CI/CD Usage
avhclient controls AWS infrastructure

• start / stop EC2 instances

• upload / run / download

• integrates with git services such as:

Interactive Usage
SSH connection to remote machine

• Linux environment for
build, test and debug.

• IDE interface via VS Code

MLOps Usage
optimize Machine Learning (ML) models

AWS EC2 – Elastic Cloud Compute

A secure and scalable compute server
that runs the AMI. Cost effective as it

starts and stops jobs on demand.

AWS AMI
Amazon Machine Image

A ready-to-use configuration of
standard software development
tools for IoT, ML, and embedded.

AWS S3 – Simple Storage Service

A temporary file storage for the build
and test process. Available during

EC2 execution of the AMI.

AWS EFS – Elastic File System

A permanent file storage that is
project-specific. Stores artifacts such

as software components or test scripts.

Arm Virtual Hardware –AWS cloud infrastructure

• Ubuntu Linux

• AVH Fast Models for Corstone
and Cortex-M

• Arm & GCC C/C++ Compiler

• CMake, CMSIS-Toolbox, Python, …

Runs on AWS data centers that are
available within different
geographic regions.

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

