
© 2022 Arm

CMSIS Team

30. Aug 2022

Open-CMSIS-Pack
Technical Review Meeting

Confidential © 2022 Arm

Pack Generation
Start to engage with wider Industry
Pack Generation Examples

Common Device Interfaces, where to start

• IoT-Socket, PSA

• What’s wrong with CMSIS-Driver

CI System for Validation of Software Stacks

8 Confidential © 2022 Arm

Opportunity: Packs give flexibility to the SW Eco-system
Flexible Development Workflows with Open-CMSIS-Pack

Catalog of
software packs

MyProject
*.csolution.yml
*.cproject.yml

Arm Virtual
Hardware

+

Private
software packs

+

CLI Tools

• Support:
Win/Linux/Mac

• Integrate with:
VS Code, Keil
Studio Cloud

Other tool integrations:

• Arm DS, Keil MDK, IAR EW-Arm, Eclipse

• NXP?

• ST?

Boards or
Devices

AVH Integrates into:

• CI, DevOps, MLOps systems (i.e. GitHub)

• Keil MDK, Arm DS, IAR EW-Arm

• Keil Studio Cloud

AVH Supports:

• CI Validation

• Evaluation

• Training

Platform for Reference Applications:

• Many different boards???

Standard Software
exposed to developers:

• Web portals

• Inside IDEs

Confidential software

• Git repo for
development

• Released software with
versioning

CMSIS
Toolbox

Compiler support

• GCC

• Arm Compiler

• IAR Compiler

github.com/Open-CMSIS-Pack

https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/README.md

9 Confidential © 2022 Arm

What do we want to achieve? Plug and Play of SW Building Blocks
Reference Application Framework: map many applications to many boards

IoT Reference Application
using RTOS Kernel

P
SA

 In
te

rf
ac

e

Device/Board Abstraction
LayerSe

cu
ri

ty
 F

ir
m

w
ar

e Interface Requirements:

IoT Reference Application: assumption connects via WiFi or wired Ethernet

Uses:

• UART for Text, IoT Socket (for WiFi driver or VSocket), Ethernet (for TCP/IP Stack)

• PSA Interface with Storage, Crypto, (OTA optional)

• Heap

Provides:

• Minimum Thread control (wait feature)

Board Layer:

Provides:

• UART for Text, IoT Socket (for WiFi driver or VSocket), Ethernet (for TCP/IP Stack), Heap

• Future interfaces may support other Reference Applications (i.e. for ML Sensor, Audio applications)

• Optional features: Event Recorder?

Security Firmware:

• Based on TF-M framework for TrustZone or mbedTLS for non-TrustZone devices

Other Requirements:

Defined Startup/Call Sequence (see https://github.com/MDK-Packs/CB_Lab4Layer/tree/master/layer)

• Example: https://github.com/MDK-Packs/CB_Lab4Layer/blob/master/layer/Board/MIMXRT1064-EVK/main.c

SW Building Blocks

• Should come from multiple vendors. Requirement
for standardized interface between the components
(Open-CMSIS-CDI)

• Reference Application: should be tested with a CI
system against a standardized CDI framework

• Should run (within reason) on many different
existing v8M and v7M devices (TrustZone optional)

• Should include OTA services with standardize
interfaces

• Future variants of the Framework should also
support other application types (DSP, ML, Graphics)

https://github.com/MDK-Packs/CB_Lab4Layer/tree/master/layer
https://github.com/MDK-Packs/CB_Lab4Layer/blob/master/layer/Board/MIMXRT1064-EVK/main.c

10 Confidential © 2022 Arm

Can we start with an example project?

Architecture

User Application

PSA
Interface

AWS
FreeRTOS

AWS MQTT/OTA client

Device/Board Abstraction

TF-MMCUBoot

Board
Interface

Platform
Interface

Bootloader Secure Non-secure Application

AVH-CM33 BSP/DFP
image for PSA / TFM
image for bootloader
layer for board IoT

Software Packs for Device/Board

STM32U5 DFP
image for PSA / TFM
image for boot loader

B-U585-IOT02A BSP
layer for board
variant “IoT”

Based on https://github.com/mdk-packs/TrustZone

Initial Tasks
Start with an example, based on AWS

• Identify scope of standardized interfaces and create API packs

• Implement standardized interfaces between components
Do we need a variant with TF-M and a variant without TrustZone

• Board support for AVH and initially one evaluation board (PoC)

• CI test execution with AVH along with interface validation

Extend to other software vendors, i.e. Azure, Matter

• Get feedback from software partners on the interfaces (ongoing)

• Work with selected partners to extend the scope of reference applications

Support more devices and boards

• Commitment from SiPs to implement the standardized interfaces

• Get first implementations for additional boards

Extend to communication technologies

• Implement interfaces to LoRa, BLE, etc.

• Extend scope of interfaces to DSP, MLDevelopment tools could support selection of packs:
https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack-Spec/issues/134#issuecomment-1174980291

https://github.com/Open-CMSIS-Pack/Open-CMSIS-Pack-Spec/issues/134#issuecomment-1174980291

11 Confidential © 2022 Arm

Interface: node in cproject.yml / clayer.yml files

cproject.yml clayer.yml

layer:

type: Board

variant: IoT WiFi

description: Board setup with WiFi interface

designed-for: # key value pairs for gen conditions in PDSC files

device: device-name

board: board-name

for future layer types - ML-framework: TFLu

for future layer types - Cloud-Service: Azure

interfaces: # interface descriptions

consumes:

- RTOS2:

provides:

- CMSIS Driver Ethernet: 0 # driver number

- CMSIS Driver USART Print: 2 # driver number

- IoT Socket: # available

- Heap : 65536 # heap size

Interfaces:

provides:

- RTOS2

layer-templates: # project requires layer templates

- type: Board # tool: check for a board layer
interfaces:

- Heap: >=50000 # minimum heap configuration

- CMSIS Driver Ethernet:
for-type: TCP-IP

- IoT Socket:
for-type: WiFi

- CMSIS Driver USART Print:

tool identifies compatible layers and lists it, user enters then:

layers:

- layer: <path to layer.yml> # tool: check for a board layer

12 Confidential © 2022 Arm

Pack Generation Examples

github.com/MDK-Packs/IoT_Socket - Native Pack project, PDSC file manually created
• IoT-Socket interface that is proposed in Open-CMSIS-CDI, during development, the repository can be directly accessed as pack (using cpackget)

• CMSIS utilities are used to validate the creation (XML schema check, PackChk), gen_pack.sh script is used to create the final pack

• Distribution of public packs uses a separate github repository (github.com/MDK-Packs/Pack)

• Pack Index file gives a vendor full control over the pack publishing process

github.com/lvgl/lvgl/tree/master/env_support/cmsis-pack - Graphic Library that uses gen_pack.sh

• PDSC file is created and maintained manually

https://github.com/MDK-Packs/tensorflow-pack - TFLu project + Arm ML components

• Pack generation (PDSC file) is automated with Python scripts and derived from the underlying open-source projects.

https://github.com/FreeRTOS/CMSIS-Packs - AWS FreeRTOS packs (created from CMake based projects)

• Pack generation (PDSC file) is automated PackGen and manifest.yml file

How packs are generated in practice

https://github.com/MDK-Packs/IoT_Socket
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/cpackget/docs/cpackget.md#install-a-repository
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/bash_script.html
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/bash_script.html
https://open-cmsis-pack.github.io/Open-CMSIS-Pack-Spec/main/html/createPackPublish.html
https://github.com/MDK-Packs/Pack
https://github.com/MDK-Packs/Pack/blob/master/MDK-Packs.pidx
https://github.com/lvgl/lvgl/tree/master/env_support/cmsis-pack
https://github.com/MDK-Packs/tensorflow-pack
https://github.com/FreeRTOS/CMSIS-packs
https://github.com/FreeRTOS/CMSIS-Packs
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/packgen/docs/packgen.md

13 Confidential © 2022 Arm

Implementation #3Implementation #2

Software
component

Central
API definition

CDI-Pack: Central API Interface definition in CMSIS-Pack format
Ensuring consistent interfaces and naming taxonomy across the industry

• Organizes the taxonomies of standard APIs that are
essential for re-useable software stacks

• Solves a common problem: API headers evolve over
time.

A central API definition shares header file and documentation of
an API interface across multiple other software components to
ensure consistency.

The API interface is distributed separate or as part of the software
component that defines this interface. The API header file is
therefore consistent.

An example is the CMSIS-Driver pack that contains various
Ethernet and Flash drivers – all compatible with the CMSIS-Driver
APIs that are published in the CMSIS Pack.

API headers

Source code/
libraries

Interfaces

API headers
(Definition)

Implementation #1

Source code/
libraries

Source code/
libraries

Source code/
libraries

Documentation
of API

http://arm-software.github.io/CMSIS_5/Pack/html/pdsc_apis_pg.html
http://arm-software.github.io/CMSIS_5/Pack/html/cp_SWComponents.html#cp_API
http://arm-software.github.io/CMSIS_5/Pack/html/cp_SWComponents.html#cp_API
https://github.com/ARM-software/CMSIS-Driver

14 Confidential © 2022 Arm

Development Workflow (exemplified with GitHub)
github.com/ARM-software/AVH-GetStarted

1. Local development: use a classic embedded toolchain such as Keil MDK and with Arm Virtual Hardware Target for MCU simulation.
A GitHub repository is used as a source code management system for synchronization, storage and version control.

2. CI pipeline setup: a GitHub Action implements the CI pipeline that gets triggered on every code update in the target repository.

3. CI execution: automated program build and testing with cloud-based Arm Virtual Hardware; results reported back to repository.

4. Failure analysis and local debug: developer can observe the CI test results. Failures can be reproduced and debugged locally.

Code
Repository

CI Pipeline

Code update Start CI

Build Test Results

Arm Virtual Hardware –Cloud Service

Return CI resultsObtain CI results

https://github.com/ARM-software/AVH-GetStarted

15 Confidential © 2022 Arm

Arm Virtual Hardware (AVH) at AWS Marketplace
Complete software toolset with AVH Fast Models for Corstone and Cortex-M CPUs

• CI/CD Usage
avhclient controls AWS infrastructure

• start / stop EC2 instances

• upload / run / download

• integrates with git services such as:

Interactive Usage
SSH connection to remote machine

• Linux environment for
build, test and debug.

• IDE interface via VS Code

MLOps Usage
optimize Machine Learning (ML) models

AWS EC2 – Elastic Cloud Compute

A secure and scalable compute server
that runs the AMI. Cost effective as it

starts and stops jobs on demand.

AWS AMI
Amazon Machine Image

A ready-to-use configuration of
standard software development
tools for IoT, ML, and embedded.

AWS S3 – Simple Storage Service

A temporary file storage for the build
and test process. Available during

EC2 execution of the AMI.

AWS EFS – Elastic File System

A permanent file storage that is
project-specific. Stores artifacts such

as software components or test scripts.

Arm Virtual Hardware –AWS cloud infrastructure

• Ubuntu Linux

• AVH Fast Models for Corstone
and Cortex-M

• Arm & GCC C/C++ Compiler

• CMake, CMSIS-Toolbox, Python, …

Runs on AWS data centers that are
available within different
geographic regions.

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

