
cpackget Signed
Packs feature
preview

Luís Tonicha
25/10/2022

Overview

● Problem
● Solution
● Implementation
● Attack vector analysis
● Pros and Cons
● Future work and Requirements

Problem

No integrity check
Packs are installed “as-is”, with no defined way of checking if the download was

successful, or if the pack is corrupted.

No authenticity guarantees
Installing a pack, whether from a public index or another location, requires blindly

trusting that it came from the right origin (the vendor).

Lacking Access Control
Other than manually accepting/rejecting packs, it’s not possible to setup a vendor

“allow/denylist” based on a trusted entity.

3

Public Key Infrastructure / X.509
X.509 public key certificates are the industry standard to provide

cryptographic security guarantee by establishing a centralized chain of

trust between participating entities.

PGP (Pretty Good Privacy) signatures
Using a web of trust model, PGP can also provide the same guarantees, as

long as the end user trusts the public key distribution mechanism.

Solution

4

Solution - X.509

5

X.509 issuance steps

Solution - X.509

6

X.509 certificate chain (leaf, intermediate and
root certificates)

Solution - PGP

7

PGP web-of-trust example

Implementation - Concepts

Use the underlying .zip format
Open-CMSIS-Pack’s .pack extension is a “disguised” Zip file, which always has a

general comment field, typically left untouched.

Hash the contents of the pack
Using the industry standard SHA256 hashing algorithm, cpackget hashes the contents

(the actual files, not the final .pack), producing one final, constant size hash.

Signature scheme/tag
We define a fixed signature scheme (which represents these objects) that is easily

verifiable and lightweight to compute.

8

Implementation - 3 different
modes
“Full” (default one)
Requires a X.509 public key certificate and its private key to sign. The former is shipped
alongside the signed hash, used to verify each other and the pack’s contents. No additional
user steps are needed to verify the pack (other than the pack itself).

“PGP”
Using an armored (passphrase protected) PGP private key, the contents are signed and this
signature is embed and shipped in the pack. To verify, the user must provide the PGP public
key that it’s checking against (this can be easily automated).

“Cert-only”
Only embeds & ships the vendor’s certificate. Does not provide security guarantees if the user does not trust the
download/ install channel. Best used to implement a simple client side Access Control List.

9

Implementation - Signature
scheme

10

cpackget-v8.2.0:f:LS0tLS1CRUdJT…:KcDDpUY6NKE…

Program version tag

Mode used (f, c or p)

Base64 PEM certificate

Base64 signed hash

(slightly varies for p and c modes)

Implementation - Example uses

11

$ cpackget signature-create Vendor.Pack.1.0.0.pack -k myprivate.key -c mycert.pem

$ cpackget signature-create --pgp Vendor.Pack.1.0.0.pack -k myprivate.pgp

$ cpackget signature-create --cert-only Vendor.Pack.1.0.0.pack -c mycert.pem

Implementation - Example uses

12

$ cpackget signature-verify Vendor.Pack.1.0.0.pack.signed

$ cpackget signature-verify Vendor.Pack.1.0.0.pack.signed -k pubkey.pgp

(upon feature deployment, these would be
automatically called when installing a pack)

$ cpackget signature-verify Vendor.Pack.1.0.0.pack.signed –e # (only exports
the cert.)

Attack vector analysis

13

Scenario: attacker modifies
contents

If it does not modify the signed hash,
even changing one bit would get
detected as the SHA256 digest
wouldn’t match.

Result: malicious pack not
installed

Attack vector analysis

14

Scenario: attacker modifies
contents and signed hash

Even if the attacker changes both the
contents and signs the hash with its
private key, this key will not match
the vendor’s public key, failing
signature verification.

Result: malicious pack not
installed

Attack vector analysis

15

Scenario: attacker modifies
contents, signed hash and
X.509 certificate, signed by an
untrustworthy CA

If all 3 get compromised, an attacker
would sign the hash with a phony CA,
and ship its certificate with it.

cpackget detects that it’s not its
elected/allowed signing CA.

Result: malicious pack not
installed

Attack vector analysis

16

Scenario: attacker invalidates
or empties signature scheme

The signature follows a fixed format,
and if it doesn’t match it, it’s
recognized as invalid.

Note: vendors would have to signify
in an external channel that the pack is

signed (like the suggested .signed
extension), to avoid a feature DoS.

Result: malicious pack not
installed (if verification is
enforced)

Attack vector analysis

17

Scenario: attacker modifies
contents, signed hash and
X.509 certificate, signed by a
compromised trusted CA

If the pack is tampered and the
attacker was able to compromise the
CA signing the vendor’s certificate,

there’s no way to differentiate from a
legitimate one.

Result: malicious pack installed

Pros and Cons - Pros

Self contained
Does not change the Open-CMSIS-Pack’s pack specification in any way (i.e the schema

used in public indexes or the PDSC files).

Local / offline use
Same usage/guarantees offline as installing from an online public index/repository.

Varying degrees of complexity
From full PKI infrastructure to PGP keys, the signee is free to choose the best method

according to its needs.

18

Pros and Cons - Pros

Lightweight
Both signature creation and checking are very light to compute, as SHA256 algo and

PKCS1v15 padding are optimized in modern systems.

Compatible and interchangeable protocol
Other Open-CMSIS-Pack tools can use this protocol interchangeably with cpackget,

just need to standardize their own version tags (making sure the tools accepts them).

CI friendly
All needed inputs are configured through flags, which easily integrates with any CI

system.

19

Pros and Cons - Pros

Simple to develop/debug
The signature scheme is made with simplicity in mind. A Bash script could verify a

signed pack in the same way as cpackget does (assuming it has the right tools like

zipinfo, grep, base64, etc..) and it’s human-readable.

20

Pros and Cons - Cons

Zip size limitation
.zip files are defined to have a maximum general comment field of 64KiB. The signed hash is of
constant size, and unless the X.509 certificate is using a complex, multi signature scheme or
huge certificate chain, this is not a relevant problem (dependends on the decided chain of
trust).

Possible denial of service
As shown in slide 16, an attacker can empty the signature, rendering the pack as “unsigned”.
For online usage, a standard must be defined to signal a pack as signed.

Manual certificate verification
As it stands, cpackget only performs some basic validations (like expiration date) on the
X.509 certificate. Some technical knowledge is needed to confirm that it is OK.

21

Future work and Requirements

Trusted CA
An entity must be designed as the trusted CA, that emits and signs certificates for the vendors to use.
This entity is also responsible for a) handing to the publishers the certificate/keys or b) sign the packs
themselves, acting as a “middleman” for the vendors.

Establishing an accepted certificate chain
The trusted CA can act as a Root CA for all vendors, or be an intermediate CA that is signed by a non
Open-CMSIS-Pack entity (like Let’s Encrypt). This trusted CA could emit vendor certificates so vendors
could emit their “sub” certificates, but a consensus in the protocol must be reached.

User side certificate handling
On the user end, should cpackget ship with the Trusted CA’s certificate embed in the binary? Should
the user manually install it from a trusted source? Should vendor certificates be stored in the OS
keychain/keyring?

22

Thank you. Questions?

23

