
Confidential © 2023 Arm

Arm MCU Tools Team

22 March 2023

Update Meeting

Replay March 2023

2 Confidential © 2023 Arm

Reference Application Framework: Production Quality Examples
Reusable software applications; developed for standardized hardware abstraction layers

Reference Application
(*.cproject.yml)

P
SA

 C
er

ti
fi

ed
 In

te
rf

ac
e

Layer Type: Board
(<board-name>.clayer.yml)

Se
cu

ri
ty

 F
ir

m
w

ar
e

Layer Type: Socket
Network Connectivity

CMSIS-Driver API

IoT Socket API

Layer Type: Shield
(<shield-name>.clayer.yml)

Shield-specific API

Layer Type: RTOS
RTOS Functionality

CMSIS-RTOS2 API

Layer Type: Stream
Sensor Middleware

Data Stream API

Se
cu

ri
ty

 B
o

u
n

d
ar

y

Supports a range of application examples:

Cloud connectivity using SDKs from Cloud Service
Providers.

Sensor reference examples.

Machine Learning applications that use sensors
and audio inputs.

Middleware examples such as TCP/IP stack and
file system.

Target various evaluation boards, production
hardware and even Arm Virtual Hardware:

Software layers with defined and standardized
interfaces contain re-usable parts of applications.

Description of standardized connections between
these software layers.

Consistent bootstrap and startup sequence.

Board and Shield layer combined provide target
hardware abstraction for many applications and
this could be extended further.

CMSIS-Toolbox helps selecting compatible layers for target hardware boards

Arm Virtual Hardware enables CI testing of reference examples on standardized
hardware abstraction layers

SDS Framework enables test data streaming during CI validation

Initial implementation uses CMSIS-Driver, but is open to other driver standards

https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/projmgr/docs/Manual/RefApp-Framework.md

3 Confidential © 2023 Arm

What are the care abouts of our target audience?

Standards &
Foundation

Software
(CMSIS, TF-M)

Tools
(SiP tools,

AVH, MDK,
GCC, IAR, …)

Eco-system
software

Evaluation boards for prototyping and low-
volume production

Products that ship in high volume
use custom hardware design

Solution Portfolio

> 10.000 projects

>10.000.000 projects for evaluation
and learning (makers, students, early
prototypes)

Addressing need of high-volume projects

Providing an attractive eco-system for
partners

MCU designs care about cost; software reuse is key for productivity and quality

Re-useable software components with standardized
interfaces:

Allow integration into many different software projects.

Use established verification and validation development
processes that are independent of final target hardware.

Frequently machine learning models are developed and
trained in isolation of the final hardware target.

Use MLOps workflows in the cloud with test and training data.

Big corporations re-use software across multiple projects
with diverse development teams or external suppliers.

Tools that enable code reuse are key, but we need to explain the
usage.

Therefore, tools should be complemented by methods and
recommendations on how to structure software.

It’s the software that takes the time.

4 Confidential © 2023 Arm

User Application
Code

Application Software – from Virtual to Physical Hardware
V

ir
tu

al
La

ye
r

IoT/ML Software
Platform

Provide evidence of correctness on Arm Virtual Hardware Target and Physical Hardware

Event Log file

User Application
Code

B
o

ar
d

La
ye

r

IoT/ML Software
Platform

Event Log file

Device SDK with
configuration

User Application
Code

Ta
rg

et
La

ye
r

IoT/ML Software
Platform

Event Log file

Device SDK with configuration

More Software

More DriversVirtual Drivers HW Drivers

Real I/O via test
equipment

Real I/O via
user peripherals

HW Drivers

Unit & Integration Testing on Virtual Hardware or Physical Hardware Boards Deployment and System Testing on Production Hardware

Essentially the same event logs are generated across the different deployments. This ensures correctness.

Simulated I/O via
Python scripts
and stimuli files

Target Hardware Abstraction

5 Confidential © 2023 Arm

Arm’s commitment to functional safety
Products, tools, platforms, and software to enable functional safety

Development Tools include
• Software Test Libraries (STL) for processors
• Functional Safety Run-Time System (FuSa RTS)

arm.com/safety

• Arm Compiler for Embedded FuSa
• Verification Tools

Uncritical functionality should have no
direct access to device hardware

https://www.arm.com/products/development-tools/embedded-and-software/software-test-libraries
https://www.arm.com/products/development-tools/embedded-and-software/fusa-rts
http://www.arm.com/safety
https://www.arm.com/utility/404?item=web%3a%7b1FFAAD8C-0B70-4AE6-A951-26453F31D054%7d%40en
http://www.keil.com/safety/

6 Confidential © 2023 Arm

Record real-world data with Synchronous Data Streaming (SDS)
Simplify Development of Embedded Applications that utilize DSP or ML algorithms with Sensor/Audio Input

M
C

U

D
ev

ic
e

So
ft

w
ar

e
o

n

P
h

ys
ic

al
 B

o
ar

d

Microcontroller Hardware

SDS Recorder
Interface

SDS Recorder
connects via

different channels

Algorithm under Development

Capture physical sensor (real-world) data using the original Microcontroller target hardware

SDS Data Files
*.gyroscope.sds

Audio
Interface

Microphone
Input

SDS Data Files
*.microphone.sds

z
yx

Training Data

Validation Data

Test Data

Data conversion
to ML training
platform can be
automated.

The SDS framework provides methods to record real-world
data for analysis and development.

Input to Digital Signal Processing (DSP) development tools
such as filter designers

Input to Machine Learning (ML) model classification, training,
and performance optimization.

SDS framework is an open-source project:
github.com/Arm-Software/SDS-Framework

MEMS Sensor
Interface

Gyroscope
Sensor

Enabled by CMSIS-Stream

https://github.com/Arm-Software/SDS-Framework

7 Confidential © 2023 Arm

A
V

H

V
SI

So
ft

w
ar

e
o

n

A
rm

 V
ir

tu
al

 H
ar

d
w

ar
e

So
ft

w
ar

e
o

n

P
h

ys
ic

al
 B

o
ar

d
M

C
U

D

ev
ic

e
SDS enables playback of real-world data for algorithm testing
Combined with AVH it enables repeatable test automation in CI systems and MLOps cloud services

MEMS Sensor
Interface

Gyroscope
Sensor

Microcontroller Hardware

SDS Recorder
Interface

SDS Recorder
connects via

different channels

Algorithm under Development

SDS Data Files
*.gyroscope.sds

Audio
Interface

Microphone
Input

SDS Data Files
*.microphone.sds

z
yx

VSI Sensor
Interface

Virtual Streaming
Interface #1

Arm Virtual Hardware (AVH)

Algorithm under Development

VSI Audio
Interface

Virtual Streaming
Interface #2

SDS Data Files
*.gyroscope.sds

SDS Data Files
*.microphone.sds

Same algorithm is verified on
precise processor simulation model

8 Confidential © 2023 Arm

Version 6
Consistent software framework for Arm Cortex-M and Cortex-A5/A7/A9 based systems

System-on-chip

Arm Cortex processor
Peripheral
interfaces

CoreSight
debug logic

Debugger

CMSIS-RTOS
Real-time execution

CMSIS-NN
Machine learning

CMSIS-DSP
Compute library

CMSIS-SVD
Peripheral description

CMSIS-DAP
Debug access

CMSIS-Driver
Middleware I/F

CMSIS-Core
Processor core and peripheral access

MPU, SAU

CMSIS-Zone
System partitioning

CMSIS-View
Event recorder

On-chip
memory

Application code

CMSIS-Toolbox
Command-line
project build

CMSIS-Pack
Software packaging

and delivery

CMSIS-Stream
Optimized

data streaming
for ML and DSP

In development

Software components for the
Arm Cortex processor target

Tools for optimizing
software development flows

https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/which-cmsis-components-should-i-care-about

More information: watch the recording of the March ‘23 CMSIS Event

https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/which-cmsis-components-should-i-care-about
https://armkeil.blob.core.windows.net/developer/Files/videos/CMSIS/20230322_CMSIS_Meeting_Replay.mp4

9 Confidential © 2023 Arm

New Pack and Repo Structure

CMSIS Version 6 enhancements (compared to version 5.9.0)
Overall goal: simplify software re-use across supported processors and toolchains

Core: C Startup, new linker scripts (using C header files), fault exception template.

Driver: GPIO for I/O pin control, simplified VIO for LEDs and switches/buttons.

RTOS2: add FuSa RTS API extensions, deprecate TZ handling.

Compiler: I/O retargeting (currently for GCC / AC6)

View: complete initial release.

DSP: incremental improvements in a separate pack.

NN: incremental improvements in a separate pack.

Stream: new component, derived from ComputeGraph (relates to SDS-Framework)

CMSIS-Toolbox v2.0 feature complete (i.e. with linker script support).

NOTE: RTOS: version 1 deprecate and remove.

CMSIS (base pack)
Core, Driver API, RTOS2 API

CMSIS
Compiler

CMSIS
NN

CMSIS
RTX RTOS

CMSIS
FreeRTOS

CMSIS
xxx RTOS

CMSIS-Stream
SDS

Framework

May’23 (Beta) July’23 (Release)

• CMSIS-DSP and CMSIS-NN already separate
• CMSIS (base pack) is just called CMSIS pack

Setup of new structure Integration tests Continues development

• Further improvements depending on
feedback

• Validation with various tools and software
integrations

NOTE: Tools are no longer
included in the CMSIS base pack

CMSIS
View

CMSIS
DSP

Demo

11 Confidential © 2023 Arm

Current Layers in more detail …
https://github.com/Open-CMSIS-Pack/RefApp-Framework

Target Hardware Abstraction

Layer-Type: ./Board + ./Shield - Target Hardware Abstraction

Initializes used device, board, and shield (optional) hardware

Initializes the application (calling function app_initialize)

Starts an RTOS kernel (optional)

Transfers control to application (entry app_main)

Standardized interface drivers for Ethernet, I2C, SPI, UART provide connectivity for user application and layers socket and stream.

Optionally includes CMSIS-View components (Event Recorder and Exception Fault Analysis)

Access to target abstraction via CMSIS_target_header (provides no direct device hardware access)

Note: access to device peripherals via CMSIS_device_header (should we define a CMSIS_board_header?)

Layer-Type: ./Socket – connects to network via Ethernet (using various stacks), WiFi (using chipsets), or Virtual Socket

Optimized BSD socket for resource constrained MCU supports standard network connectivity, could be extended to Matter

Layer-Type: ./RTOS – access to various RTOS kernels with CMSIS-RTOS2 abstraction (could be also part of Reference Application)

Layer-Type: ./Stream – provides interfaces for machine learning applications; currently in development

PSA Interface: - todo, a first implementation is based on STM32U5

Layers are combined based on the `connections:` described in the cproject.yml / clayer.yml files.

https://github.com/Open-CMSIS-Pack/RefApp-Framework
https://github.com/Open-CMSIS-Pack/RefApp-Framework/tree/main/layer/Board
https://github.com/ARM-software/CMSIS-View
https://arm-software.github.io/CMSIS-View/main/evr.html
https://arm-software.github.io/CMSIS-View/main/fault.html
https://github.com/Open-CMSIS-Pack/RefApp-Framework/tree/main/layer/Socket
https://github.com/Open-CMSIS-Pack/RefApp-Framework/tree/main/layer/Socket
https://github.com/open-cmsis-pack/devtools/blob/main/tools/projmgr/docs/Manual/YML-Input-Format.md#connections

12 Confidential © 2023 Arm

Potential IDE workflow for retargeting reference examples

set: Bus.I2C (Jumper configuration: I2C/SPI=I2C, I2C=I2C0 - FXAS21002 I2C Bus)

Add a new board
• Review the selection of layers
• Potentially select different layers

Ready to Go!

13 Confidential © 2023 Arm

CMSIS-Toolbox
Command-line tools – tool foundation for CLI and IDE software development flows
• Package creation and validation

• packgen - create a software pack from a Cmake based software repository
• packchk - semantic validation of a software pack description and the archive content

• Package management including discovery of components, devices, boards and examples
• cpackget - download, add and remove packs and local repositories to CMSIS_PACK_ROOT

• Project management for constructing projects from local files and software components
• csolution - manage complex applications with *.yaml user input files and content from CMSIS-Packs and output cbuild files for project build

• Project build management
• cbuildgen (aka CMSIS-Build) - convert a single project context to a CMake build

• Build orchestration from solution *.yaml input to build artifact including pack installation
• cbuild - convert dependant project context from the same configuration

• Package index utilities
• vidx2pidx - create a flat index file from a vendor index file; a public index is maintained here: www.keil.com/pack/index.pidx; vendor index: www.keil.com/pack/keil.vidx

22’Q4 23’Q1 23’Q2 22’Q3 22’Q4 23’Q1

• Support for GCC, Arm Compiler 6, IAR
• Examples that work across toolchains
• Basic support for layers
• Initial integration into VS Code

CMSIS-Toolbox 1.5.0 CMSIS-Toolbox 2.0.x CMSIS-Toolbox 2.1.x

• Improved CMake integration with
pre/post build steps and project
dependencies

• CPRJ format deprecated

• Automatic linker script generation
• Generator support finalized
• Context-map: project use across solutions
• Improved Layer handling

github.com/Open-CMSIS-Pack/cmsis-toolbox/releases

http://www.keil.com/pack/index.pidx
https://github.com/Open-CMSIS-Pack/cmsis-toolbox/releases

14 Confidential © 2023 Arm

We are committed to CMSIS…
… and we will make it work for you – but we need your help

To get an invite
to these

virtual meetings
send email to:

cmsis@arm.com

Open-CMSIS Bi-Weekly Workshops: starting Tue 18. April (15:00 GMT)
• 18. April: How to create scalable software packs to maximize software re-use
• 2. May: Structure of Device Family Packs (DFP) and Board Support Packs (BSP)
• 16. May: CI test process for validation of reference applications
• Review and evolve existing API interfaces – we need to structure taxonomies
• Any other topics that relate to improving software re-use with packs

PSA Certified Working Group meetings: 20. April, 18. May (16:00 GMT)
• Approval of the PSA Certified Firmware Update 1.0 specification
• Identifying future requirements for firmware update, and evolving the spec

CMSIS-Stream technical details: Wednesday, 10. May (15:00 GMT)
• Introduction to infra-structure, tools, and SDS-Framework
• Discussion of MLOps integration and feedback on potential gaps

mailto:cmsis@arm.com
https://linaro.atlassian.net/wiki/spaces/CMSIS/pages/28516450540/Meeting+notes
https://github.com/ARM-software/psa-api
https://github.com/ARM-software/CMSIS-DSP/tree/main/ComputeGraph

15 Confidential © 2023 Arm

Next steps
How can we work together in building a portfolio of targets and applications?

Review RefApp-Framework and provide feedback

How to get to a standardized PSA Interface? Proposals welcome

Can IAR add support for I/O retargeting with IAR compiler to:
• https://github.com/ARM-software/CMSIS-Compiler/tree/main/source

Application development has started
• https://github.com/Open-CMSIS-Pack/AWS_MQTT_MutualAuth_SW_Framework/tree/develop
• TFLmicrospeech for Stream layer
• Considering Arm Model Zoo examples
• Working on CI test process for validation with Arm Virtual Hardware
• Working on CI test process for integration test
• Working with NXP on sensor examples

How can we engage with more partners?

https://github.com/Open-CMSIS-Pack/RefApp-Framework
https://github.com/Open-CMSIS-Pack/AWS_MQTT_MutualAuth_SW_Framework/tree/develop
https://github.com/RobertRostohar/AVH-TFLmicrospeech/tree/develop

Confidential © 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

Confidential © 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: Update Meeting
	Slide 2: Reference Application Framework: Production Quality Examples
	Slide 3: What are the care abouts of our target audience?
	Slide 4: Application Software – from Virtual to Physical Hardware
	Slide 5: Arm’s commitment to functional safety
	Slide 6: Record real-world data with Synchronous Data Streaming (SDS)
	Slide 7: SDS enables playback of real-world data for algorithm testing
	Slide 8: Version 6
	Slide 9: CMSIS Version 6 enhancements (compared to version 5.9.0)
	Slide 10: Demo
	Slide 11: Current Layers in more detail …
	Slide 12: Potential IDE workflow for retargeting reference examples
	Slide 13: CMSIS-Toolbox
	Slide 14: We are committed to CMSIS…
	Slide 15: Next steps
	Slide 16
	Slide 17

