arm cwsi, .

How to validate / | t/

re-usable software components

o

., ' 4 .

B
Linaro WG Meeting
.
» > s .
.
Arm MCU Tools Team
16 May 2023 »

2023 Arm

Agenda

-- What are “re-usable software components”?

-- Industry-standard test processes (DevOps, Test Driven Development)
-- Continuous Integration (Cl) Build Process with CMSIS-Toolbox

- Example projects
- Build for multiple compilers and targets

-- Test-Process Arm Virtual Hardware (AVH)

- Using Virtual Interfaces

-- CMSIS-VIO: a simple /0O interface for testing and example projects

-- Open items and Discussion

2 ©2023 Arm G rm

What are “re-usable software components”?

Re-useable software components ...
-- Allow integration into many different software projects and different targets.
-- Work with different toolchains and different compiler options.

-- Use standardized interfaces to connect with device specific |/O.

-- Use established verification and validation development processes.
that are independent of final target hardware.

-- Still the software components are optimized for the target architecture.

Algorithms are optimized towards the processor architecture.
Device specific I/O interfaces are flexible enough to support different methods (IRQ, DMA).

3 ©2023 Arm G rm

4

Tools for testing on whole Cortex-M Processor Portfolio

Cortex-M85
Cortex-M55

Helium vector instruction set

Cortex-M33 Armv8-M
Cortex-M23*

TrustZone Security
Cortex-M35P Co-processor interface
Cortex-M7

Cortex-M4 DSP/SIMD instructions
Cortex-M3** Floating-Point Unit (FPU)

© 2023 Arm

CMSIS-Toolbox — supports multiple compilers,

multiple target-types, and multiple build-types.
« CMSIS DFP defines setup for all processors

 Cbuild --toolchain switches compilers

Arm Virtual Hardware / FVP supports all Cortex-M

processors with Compiler, Simulation Models
* Available as Cloud service and Desktop variant
* AVH models offer virtual I/0 interfaces for

e Simple I/O (LED, buttons)

e Data streaming (Sensor, Audio, Video)

* Connectivity via Ethernet and Socket

MDK supports desktop development

arm

https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://github.com/arm-software/CMSIS_DFP
https://github.com/arm-software/AVH
https://arm-software.github.io/AVH/main/simulation/html/index.html#Virtual_Interfaces

Arm uses these tools widely
For testing of CMSIS components, Arm FuSa RTS, TF-M, Compiler development

-- Test process is predominately done on models
- Only very few physical targets are used to show consistency

Arm FuSa RTS: Run-time system for functional safety

Software components certified for safety-critical applications

User Application code

FuSa RTX RTOS

Software test

FuSa « Automotive:

Event library (STL) « Industrial:
Self-test code for s on.
Recorder run-time verification * Medical:
« Railway:

CMSIS-Core
(device-specific)
Supported processors:

« Cortex-M0/MO+

« Cortex-M3
Arm Cortex-M processor - Cortex-M4
_____ FuSa RTS components certified with Arm Compiler 6 for functional safety . Cortex-M7

2 © 2022 Arm

www.keil.com/fusa-rts

-~ Covered safety standards:

I1SO 26262, ASIL D
IEC 61508, SIL3
IEC 62304, Class C
EN 50128, SIL4

arm

4

FuSa RTS 1.1.0 — Process Isolation

Enables use of software with different safety integrity levels within a system

Benefits:
- Reduced validation effort for lower SIL components
« Reuse of existing software
« Smaller system BOM with one single-core MCU

Uncritical
functionality

Safety critical
functionality

Example: insulin pump,
critical actuators,
brakes

Example: network,
graphics, non-safety SW
components

FuSa RTS allows to protect safety-critical
functions from software flaws in other parts of
the system:
- Spatial isolation: protected access to memory and
peripherals using processor MPU
- Temporal isolation: uses thread watchdogs to
ensure that critical threads are not delayed
+ Controlled system recovery in case of failures (on
MPU fault or watchdog alarm)

FuSa RTS
RTOS, Event Recorder, C Run-Time Library

Arm Cortex-M processor

© 2022 Arm

arm

5

© 2023 Arm

arm

arm

Cloud-based
Continuous Integration (Cl)

Test and Verification with
Arm Virtual Hardware (AVH)

7

Types of Software Testing

Better quality faster, conforming to safety standards " Specticaton Tohios,
rehitecture Integration
-~ Unit Testing Gl Testing

- Test little chunks of code at a time
- Tested against your ‘test’ build Sty

-— Integration Testing
- Test whether two components work together when they are combined
Verifies that the interface between them works properly

- Tested against your ‘test’ build Effort
-- System (Black-box) Testing No 1
- Test that final system works as expected. Control external controls & °
stimuli to system and measure response
- Tested against your ‘release’ build
-—- Regression Testing cl
- Suite of tests (unit & integration tests) & run continuously upon version /
control updates Time

- Used in Continuous Integration (Cl)

© 2023 Arm G r m

What is Test-driven Development, DevOps, and CI/CD

Test-driven development embraces that software
requirements are converted to test cases before Software development (Dev) IT operations (Ops)
software is fully developed. It implements the test-

first programming concepts of extreme programming.

DevOps combines software development (Dev) and
IT operations (Ops) to shorten system development by

Re)
T
°
. 10 . , . . c
providing continuous integration, test, and delivery. =

\

° La rge Scale dellvery tO many |OT endp0|nt deV'ceS Source https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

ClI/CD services (provide the Ops part)

* Integrate incremental code changes of several
developers into production code

* Run automated tests to verify functionality

* Deploy firmware images to test fleets

Combined, these techniques enable agile software development with the ability to make code changes quicker!

8 ©2023Arm G rm

9

Arm Virtual Hardware (AVH) — Corstone and Cortex-M CPUs

www.arm.com/virtual-hardware

-~ Precise simulation models of Cortex-M
device sub-systems designed for complex
software verification and testing

-~ Runs any RTOS or bare metal code

-- Provides virtual peripheral interfaces for
|/O simulation

-- Enables test automation of diverse
software workloads, including unit,
integration tests, and fault injection

-- Cloud service that can be integrated in
Cl/CD and MLOps development flows

© 2023 Arm

AVH Fast Models for
Corstone and Cortex-M CPUs

Cortex-M Ethos-U65/U55
* TrustZone microNPU

e SIMD
e Helium

Developer
Resources

* |/O drivers

* Test scripts
* CI/CD integration
* Usage examples

* Test report tools

AWS and GitHub

Arm Virtual Hardware

* AVH Fast Models
* C/C++ Compiler

* Build utilities,

arm

http://www.arm.com/virtual-hardware

I e
Create and Debug O @}@} ‘ Test Automation |

IDE development Cl development
Local installation Jenkins or GitHub

Keil MDK with: Cloud Service with:

* Interactive Debug and Trace Views * Arm Virtual Hardware
* Arm Compiler * Arm Compiler

* Arm Virtual Hardware * Compatible build tools

Version Control System
Code Repository

Developer 1 Developer 2 Developer ‘n’
Local Builds Local Builds Local Builds

Regression Verification
Tests Results

Multiple Builds —

Developer 1 Developer 2 Developer ‘n’
Local Debug Local Debug Local Debug

10 © 2023 Arm q r m

Development Workflow (exemplified with GitHub)
github.com/ARM-software/AVH-GetStarted

" _- | Arm Virtual Hardware — Cloud Service

¢) GitHub @
Code update Start Cl
Code
Repository
Cl Pipeline
O Obtain Cl results Return Cl results

A

1. Local development: use a classic embedded toolchain such as Keil MDK and with Arm Virtual Hardware Target for MCU simulation.
A GitHub repository is used as a source code management system for synchronization, storage and version control.

2. Cl pipeline setup: a GitHub Action implements the Cl pipeline that gets triggered on every code update in the target repository.
Cl execution: automated program build and testing with cloud-based Arm Virtual Hardware; results reported back to repository.

4. Failure analysis and local debug: developer can observe the Cl test results. Failures can be reproduced and debugged locally.

11 © 2023 Arm a r m

https://github.com/ARM-software/AVH-GetStarted

CMSIS-Toolbox: Test System Configuration

Build support for multiple compilers, multiple target-types, and multiple build-types.

I”

-- Overview of Operation describes elements for setup of “test.csolution.ym
- cdefault.yml allows to switch compilers
- target-types allow to define multiple test targets (i.e. Cortex-M3, Cortex-M4, ..., Cortex-M85)
- build-types allow to define build variants (could be different compiler optimizations)

I”

-- A “test.csolution.yml” can have multiple projects that share this common configuration
- Enables unit test projects for verification, i.e. with Arm Virtual Hardware

-- CMSIS-Toolbox cbuild is designed for effective build orchestration:

> cbuild list toolchains # Generate all project variants for AC6
AC60@6.19.0 > cbuild test.csolution.yml -r -p --toolchain AC6
GCC@1l2.2.1

Generate all project variants for GCC

> cbuild test.csolution.yml -r -p --toolchain GCC

12 © 2023 Arm G r m

https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/projmgr/docs/Manual/Overview.md

Get Execution Details with CMSIS-View Event Annotations

void loop () {

EventStartCv (0, current time, previous_time)
TfLiteStatus feature status =

feature provider->PopulateFeatureData (error reporter,
previous time,

current time, ..)

EventStopCv (0, feature status, how many new slices);

EventStartCv(l, current time, how _many new s
TfLiteStatus invoke status = interpreter->In
EventStopCv(l, invoke status, 0U);

EventStartCv (2, current time, 0U);
TfLiteStatus process status = recognizer->Pr

EventStopCv (2, process_status, score);

More information:

Event Statistics — code annotation

eventlist — command line utility

© 2023 Arm

Event Statistics

Source
= @ Event Start/Stop Group A - enabled
Event Start/Stop Group B - enabled
¥ Event Start/Stop Group C - enabled
= ‘% Slot=0 (Errors=1)

Min t: Start: v1=0v2=0

Max t: Start: v1=0 v2=0
2 %% Slot=1

Min t: Start: v1=100 v2=5

Max t: Start: v1=0v2=49
= %8 Slot=2

Min t: Start: v1=0v2=0

Max t: Start: v1=4100 v2=0
= ¥ Event Start/Stop Group D - enabled
= RTX5 RTOS

(=) Thread Events

#app_main

o
<

[

Count

13402 (+1)

0(+1)

T(tot)=547.85
T(tot)=3.964 T(avg)=90.10ms f(min)=90.10ms

Stop: v1=0v2=0t=90.10ms
T(tot)=261.72us T(avg)=5.92us T(min)=1.12us

2

Filter Enable / Execution Timing
2

[v

v

T(avg)=40.84us "(min)=40.0C
Stop: v1=0v2=0t=40.00ns
Stop: v1=0v2=49 t=33.27ms

Stop: v1=0v2=0t=90.10ms

Stop: v1=0v2=0t=1.12us
Stop: v1=0v2=75t=7.16us

Running: [0.00%] min=0s, max=0s, avg=0s

arm

https://arm-software.github.io/CMSIS-View/main/ev_stat.html
https://arm-software.github.io/CMSIS-View/main/evntlst.html

Cl Example: VIO_Blinky using CMSIS-VIO

Test-Automation with simple 1/0 (on physical board this would be LEDs and buttons)

vio_fvp.c (Source Code) arm_vio.py (Test Script for AVH)
Initialize
/f Get signal input. # @return None
. . . . def init():
Ulﬂti:_'_t v1DEet51gnal I:LJlﬂtEE_t mEISk.:I { logging.info("Python function init() called™)

keyboardThread) .start()
automatedButton, args = [15]).start()
stopModel, args = [25]).start()

uintiZ t signal; threading.Thread(target
threading. Thread(target
threading.Thread({target

ARM VIOD->Signalln.mask = mask,

signal = ARM VIO-»5ignalln.signal,;
Read Signal
(@param mask bit mask of signals to read
vinSignalIn &= ”IHESFCJ' # [@return signal signal value read
vioSignalln |= signal; def rdSignal(mask):
global Signalln
logging.info("Python function rdSignal() called")
return signal;
} signal = Signalln & mask
S5ignalln &= ~mask
logging.debug("Read signal: {}, mask: {}".format(signal, mask)})

Note: essentially the same blinky example as in BSP-Pack-HandsOn return signal

14 © 2023 Arm G r m

https://github.com/Open-CMSIS-Pack/BSP-Pack-HandsOn

CMSIS Version 6 - enhancements (compared to 5.9) + timeline
Overall goal: simplify software re-use across supported processors and toolchains

Core: C Startup, new linker scripts (using C header files), fault exception template. New Pack and Repo Structure

Driver: GPIO for I/O pin control, simplified VIO for LEDs and switches/buttons. CMSIS CMSIS CMSIS
RTOS2: add FuSa RTS API extensions, deprecate TZ handling. RTX RTOS FreeRTOS xxx RTOS
Compiler: 1/0 retargeting (currently for GCC / AC6)
iy setine Y cvsis [cmsis o
Stream DFP

C il i DSP
Stream: new component, derived from ComputeGraph (relates to SDS-Framework) b View M
DFP: Generic Device Family Pack for all Cortex-M processors.

CMSIS (base pack)
CMSIS-Toolbox v2.0 feature complete (i.e. with linker script support). Core, Driver API, RTOS2 API

NOTE: RTOS: version 1 deprecate and remove.

View: complete initial release.
DSP: incremental improvements in a separate pack.
NN: incremental improvements in a separate pack.

NOTE: Tools are no longer

included in the CMSIS base pack May’23 (Beta) July’23 (Release)
.~ Setupofnewstructure Integration tests Continues development
* CMSIS-DSP and CMSIS-NN already separate * Validation with various tools and software * Further improvements depending on
* CMSIS (base pack) is just called CMSIS pack integrations feedback

16 © 2023 Arm q r m

Actions and Discussion

Closing gaps for seamless operation

-- AVH Examples
« CMSIS-RTOS?2 Validation using a build test matrix
« RTX Blinky with simplified CMSIS-VIO and native GitHub action workflows.
- Native GitHub integration

-- AVH VSI — Virtual Streaming Interface
- Audio: github.com/ARM-software/AVH-TFLmicrospeech — shows eventlist tool
- Sensor: github.com/ARM-software/SDS-Framework - (introduction video here)
- Video: coming soon
- VSl is flexible with DMA, IRQ and timer capablities; what other use-cases would be important?

-- Please provide feedback so that we can close gaps

17 © 2023 Arm G r m

https://arm-software.github.io/AVH/main/examples/html/index.html
https://github.com/ARM-software/CMSIS-RTOS2_Validation
https://github.com/ARM-software/CMSIS-RTOS2_Validation/blob/main/Project/build.py
https://github.com/Arm-Labs/RTX_Blinky
https://github.com/TeoMahnic/VIO_Blinky/blob/main/Driver/arm_vio.h
https://github.com/Arm-Labs/RTX_Blinky/tree/main/.github/workflows
https://github.com/Arm-Labs/RTX_Blinky
https://github.com/ARM-software/AVH-TFLmicrospeech
https://github.com/ARM-software/AVH-TFLmicrospeech/actions/runs/4425489088/jobs/7760610674#step:8:76
https://github.com/ARM-software/SDS-Framework
https://armkeil.blob.core.windows.net/developer/Files/videos/CMSIS/20230510_CMSIS-Stream_and_SDS_Technical_Review.mp4

arm

© 2023 Arm

Thank You
Danke
Gracias
Grazie
G
HYMES
Asante
Merci

H AL T

Ygdiq
Kiitos
8
SRIEIG
NTIN

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: How to validate re-usable software components
	Slide 2: Agenda
	Slide 3: What are “re-usable software components”?
	Slide 4: Tools for testing on whole Cortex-M Processor Portfolio
	Slide 5: Arm uses these tools widely
	Slide 6: Cloud-based Continuous Integration (CI)
	Slide 7: Types of Software Testing
	Slide 8: What is Test-driven Development, DevOps, and CI/CD
	Slide 9: Arm Virtual Hardware (AVH) – Corstone and Cortex-M CPUs
	Slide 10
	Slide 11: Development Workflow (exemplified with GitHub)
	Slide 12: CMSIS-Toolbox: Test System Configuration
	Slide 13: Get Execution Details with CMSIS-View Event Annotations
	Slide 14: CI Example: VIO_Blinky using CMSIS-VIO
	Slide 15: Demos
	Slide 16: CMSIS Version 6 - enhancements (compared to 5.9) + timeline
	Slide 17: Actions and Discussion
	Slide 18
	Slide 19

