
© 2023 Arm

Arm MCU Tools Team

16 May 2023

How to validate
re-usable software components

Linaro WG Meeting

2 © 2023 Arm

Agenda

What are “re-usable software components”?

Industry-standard test processes (DevOps, Test Driven Development)

Continuous Integration (CI) Build Process with CMSIS-Toolbox
• Example projects
• Build for multiple compilers and targets

Test-Process Arm Virtual Hardware (AVH)

• Using Virtual Interfaces

CMSIS-VIO: a simple I/O interface for testing and example projects

Open items and Discussion

3 © 2023 Arm

What are “re-usable software components”?

Re-useable software components …

Allow integration into many different software projects and different targets.

Work with different toolchains and different compiler options.

Use standardized interfaces to connect with device specific I/O.

Use established verification and validation development processes.
• that are independent of final target hardware.

Still the software components are optimized for the target architecture.
• Algorithms are optimized towards the processor architecture.
• Device specific I/O interfaces are flexible enough to support different methods (IRQ, DMA).

4 © 2023 Arm

Tools for testing on whole Cortex-M Processor Portfolio

TOP/s

Armv8.1-M

Armv8-M

Armv7-M

Armv6-M

Cortex-M33
Cortex-M23*
Cortex-M35P

Cortex-M7
Cortex-M4
Cortex-M3**

Cortex-M0+
Cortex-M0

Cortex-M85
Cortex-M55

Helium vector instruction set

DSP/SIMD instructions
Floating-Point Unit (FPU)

TrustZone Security
Co-processor interface

CMSIS-Toolbox – supports multiple compilers,
multiple target-types, and multiple build-types.

• CMSIS_DFP defines setup for all processors

• Cbuild --toolchain switches compilers

Arm Virtual Hardware / FVP supports all Cortex-M
processors with Compiler, Simulation Models

• Available as Cloud service and Desktop variant

• AVH models offer virtual I/O interfaces for

• Simple I/O (LED, buttons)

• Data streaming (Sensor, Audio, Video)

• Connectivity via Ethernet and Socket

MDK supports desktop development

https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://github.com/arm-software/CMSIS_DFP
https://github.com/arm-software/AVH
https://arm-software.github.io/AVH/main/simulation/html/index.html#Virtual_Interfaces

5 © 2023 Arm

Arm uses these tools widely
For testing of CMSIS components, Arm FuSa RTS, TF-M, Compiler development

Test process is predominately done on models
• Only very few physical targets are used to show consistency

© 2023 Arm

Cloud-based
Continuous Integration (CI)

Test and Verification with
Arm Virtual Hardware (AVH)

7 © 2023 Arm

Types of Software Testing
Better quality faster, conforming to safety standards

Unit Testing
• Test little chunks of code at a time
• Tested against your ‘test’ build

Integration Testing
• Test whether two components work together when they are combined

Verifies that the interface between them works properly
• Tested against your ‘test’ build

System (Black-box) Testing
• Test that final system works as expected. Control external controls &

stimuli to system and measure response
• Tested against your ‘release’ build

Regression Testing
• Suite of tests (unit & integration tests) & run continuously upon version

control updates
• Used in Continuous Integration (CI)

8 © 2023 Arm

What is Test-driven Development, DevOps, and CI/CD
Test-driven development embraces that software
requirements are converted to test cases before
software is fully developed. It implements the test-
first programming concepts of extreme programming.

DevOps combines software development (Dev) and
IT operations (Ops) to shorten system development by
providing continuous integration, test, and delivery.

CI/CD services (provide the Ops part)

• Integrate incremental code changes of several
developers into production code

• Run automated tests to verify functionality

• Deploy firmware images to test fleets

• Large scale delivery to many IoT endpoint devices

Combined, these techniques enable agile software development with the ability to make code changes quicker!

Source https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

Software development (Dev) IT operations (Ops)

9 © 2023 Arm

AVH Fast Models for
Corstone and Cortex-M CPUs

Arm Virtual Hardware (AVH) – Corstone and Cortex-M CPUs
www.arm.com/virtual-hardware

Precise simulation models of Cortex-M
device sub-systems designed for complex
software verification and testing

Runs any RTOS or bare metal code

Provides virtual peripheral interfaces for
I/O simulation

Enables test automation of diverse
software workloads, including unit,
integration tests, and fault injection

Cloud service that can be integrated in
CI/CD and MLOps development flows

Cortex-M
• TrustZone
• SIMD
• Helium

Ethos-U65/U55
microNPU

Memory
• Secure/

Non-secure
• DMA

Peripherals
• GPIO
• UART, SPI, I2C
• Ethernet

Virtual I/O
• Data values
• Streaming
• BSD-Socket

Debug Interface
• MDK, DS
• GDB
• Event Recorder

Developer
Resources

AWS and GitHub
Arm Virtual Hardware

• I/O drivers

• Test scripts

• CI/CD integration

• Usage examples

• Test report tools

• AVH Fast Models

• C/C++ Compiler

• Build utilities, ….

http://www.arm.com/virtual-hardware

10 © 2023 Arm

IDE development
Local installation

Keil MDK with:
• Interactive Debug and Trace Views
• Arm Compiler
• Arm Virtual Hardware

Developer ‘n’
Local Builds

Developer ‘n’
Local Debug

Developer 2
Local Builds

Developer 2
Local Debug

Developer 1
Local Builds

Developer 1
Local Debug

Multiple Builds
Regression

Tests
Verification

Results

Create and Debug

CI development
Jenkins or GitHub

Cloud Service with:
• Arm Virtual Hardware
• Arm Compiler
• Compatible build tools

Test Automation

Version Control System
Code Repository

11 © 2023 Arm

Development Workflow (exemplified with GitHub)
github.com/ARM-software/AVH-GetStarted

1. Local development: use a classic embedded toolchain such as Keil MDK and with Arm Virtual Hardware Target for MCU simulation.
A GitHub repository is used as a source code management system for synchronization, storage and version control.

2. CI pipeline setup: a GitHub Action implements the CI pipeline that gets triggered on every code update in the target repository.

3. CI execution: automated program build and testing with cloud-based Arm Virtual Hardware; results reported back to repository.

4. Failure analysis and local debug: developer can observe the CI test results. Failures can be reproduced and debugged locally.

Code
Repository

CI Pipeline

Code update Start CI

Build Test Results

Arm Virtual Hardware – Cloud Service

Return CI resultsObtain CI results

https://github.com/ARM-software/AVH-GetStarted

12 © 2023 Arm

CMSIS-Toolbox: Test System Configuration
Build support for multiple compilers, multiple target-types, and multiple build-types.

Overview of Operation describes elements for setup of “test.csolution.yml”
• cdefault.yml allows to switch compilers
• target-types allow to define multiple test targets (i.e. Cortex-M3, Cortex-M4, …, Cortex-M85)
• build-types allow to define build variants (could be different compiler optimizations)

A “test.csolution.yml” can have multiple projects that share this common configuration
• Enables unit test projects for verification, i.e. with Arm Virtual Hardware

CMSIS-Toolbox cbuild is designed for effective build orchestration:

> cbuild list toolchains

AC6@6.19.0

GCC@12.2.1

Generate all project variants for AC6

> cbuild test.csolution.yml -r -p --toolchain AC6

Generate all project variants for GCC

> cbuild test.csolution.yml -r -p --toolchain GCC

https://github.com/Open-CMSIS-Pack/cmsis-toolbox
https://github.com/Open-CMSIS-Pack/devtools/blob/main/tools/projmgr/docs/Manual/Overview.md

13 © 2023 Arm

Get Execution Details with CMSIS-View Event Annotations
void loop() {

:

EventStartCv(0, current_time, previous_time);

TfLiteStatus feature_status = feature_provider->PopulateFeatureData(error_reporter,

previous_time, current_time, …)

EventStopCv(0, feature_status, how_many_new_slices);

:

EventStartCv(1, current_time, how_many_new_slices);

TfLiteStatus invoke_status = interpreter->Invoke();

EventStopCv(1, invoke_status, 0U);

:

EventStartCv(2, current_time, 0U);

TfLiteStatus process_status = recognizer->ProcessLatestResults(output, current_time,

&found_command, &score, &is_new_command);

EventStopCv(2, process_status, score);

More information:

• Event Statistics – code annotation

• eventlist – command line utility

https://arm-software.github.io/CMSIS-View/main/ev_stat.html
https://arm-software.github.io/CMSIS-View/main/evntlst.html

14 © 2023 Arm

CI Example: VIO_Blinky using CMSIS-VIO
Test-Automation with simple I/O (on physical board this would be LEDs and buttons)

vio_fvp.c (Source Code) arm_vio.py (Test Script for AVH)

Note: essentially the same blinky example as in BSP-Pack-HandsOn

https://github.com/Open-CMSIS-Pack/BSP-Pack-HandsOn

Demos

16 © 2023 Arm

New Pack and Repo Structure

CMSIS Version 6 - enhancements (compared to 5.9) + timeline
Overall goal: simplify software re-use across supported processors and toolchains

Core: C Startup, new linker scripts (using C header files), fault exception template.

Driver: GPIO for I/O pin control, simplified VIO for LEDs and switches/buttons.

RTOS2: add FuSa RTS API extensions, deprecate TZ handling.

Compiler: I/O retargeting (currently for GCC / AC6)

View: complete initial release.

DSP: incremental improvements in a separate pack.

NN: incremental improvements in a separate pack.

Stream: new component, derived from ComputeGraph (relates to SDS-Framework)

DFP: Generic Device Family Pack for all Cortex-M processors.

CMSIS-Toolbox v2.0 feature complete (i.e. with linker script support).

NOTE: RTOS: version 1 deprecate and remove.

CMSIS (base pack)
Core, Driver API, RTOS2 API

CMSIS
Compiler

CMSIS
NN

CMSIS
RTX RTOS

CMSIS
FreeRTOS

CMSIS
xxx RTOS

CMSIS
Stream

SDS

May’23 (Beta) July’23 (Release)

• CMSIS-DSP and CMSIS-NN already separate
• CMSIS (base pack) is just called CMSIS pack

Setup of new structure Integration tests Continues development

• Further improvements depending on
feedback

• Validation with various tools and software
integrations

NOTE: Tools are no longer
included in the CMSIS base pack

CMSIS
View

CMSIS
DSP

CMSIS
DFP

17 © 2023 Arm

Actions and Discussion
Closing gaps for seamless operation

AVH Examples
• CMSIS-RTOS2 Validation using a build test matrix
• RTX_Blinky with simplified CMSIS-VIO and native GitHub action workflows.
• Native GitHub integration

AVH VSI – Virtual Streaming Interface
• Audio: github.com/ARM-software/AVH-TFLmicrospeech – shows eventlist tool
• Sensor: github.com/ARM-software/SDS-Framework - (introduction video here)
• Video: coming soon
• VSI is flexible with DMA, IRQ and timer capablities; what other use-cases would be important?

Please provide feedback so that we can close gaps

https://arm-software.github.io/AVH/main/examples/html/index.html
https://github.com/ARM-software/CMSIS-RTOS2_Validation
https://github.com/ARM-software/CMSIS-RTOS2_Validation/blob/main/Project/build.py
https://github.com/Arm-Labs/RTX_Blinky
https://github.com/TeoMahnic/VIO_Blinky/blob/main/Driver/arm_vio.h
https://github.com/Arm-Labs/RTX_Blinky/tree/main/.github/workflows
https://github.com/Arm-Labs/RTX_Blinky
https://github.com/ARM-software/AVH-TFLmicrospeech
https://github.com/ARM-software/AVH-TFLmicrospeech/actions/runs/4425489088/jobs/7760610674#step:8:76
https://github.com/ARM-software/SDS-Framework
https://armkeil.blob.core.windows.net/developer/Files/videos/CMSIS/20230510_CMSIS-Stream_and_SDS_Technical_Review.mp4

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: How to validate re-usable software components
	Slide 2: Agenda
	Slide 3: What are “re-usable software components”?
	Slide 4: Tools for testing on whole Cortex-M Processor Portfolio
	Slide 5: Arm uses these tools widely
	Slide 6: Cloud-based Continuous Integration (CI)
	Slide 7: Types of Software Testing
	Slide 8: What is Test-driven Development, DevOps, and CI/CD
	Slide 9: Arm Virtual Hardware (AVH) – Corstone and Cortex-M CPUs
	Slide 10
	Slide 11: Development Workflow (exemplified with GitHub)
	Slide 12: CMSIS-Toolbox: Test System Configuration
	Slide 13: Get Execution Details with CMSIS-View Event Annotations
	Slide 14: CI Example: VIO_Blinky using CMSIS-VIO
	Slide 15: Demos
	Slide 16: CMSIS Version 6 - enhancements (compared to 5.9) + timeline
	Slide 17: Actions and Discussion
	Slide 18
	Slide 19

