TMP MLPerf Inference

Preparing the virtual environment for running the benchmarks. This part is common to all benchmarks and only needs to be performed once.

Install the prerequisites
cd ~ mkdir tf_venv cd tf_venv python3 -m venv . source bin/activate python -m pip install --upgrade pip wheel python -m pip install google protobuf==3.19.4 python -m pip install cython absl-py pillow python -m pip install --extra-index-url https://snapshots.linaro.org/ldcg/python-cache/ numpy==1.19.5 python -m pip install --extra-index-url https://snapshots.linaro.org/ldcg/python-cache/ matplotlib python -m pip install --no-binary pycocotools pycocotools python -m pip install ck ck pull repo:ck-env python -m pip install scikit-build python -m pip install --extra-index-url https://snapshots.linaro.org/ldcg/python-cache/ tensorflow-io-gcs-filesystem==0.21.0 h5py==3.1.0 python -m pip install tensorflow-aarch64==2.7.0

The last line above can be changed to point to the version of TensorFlow that you wish to benchmark. The virtual environment can be created wherever you like and called whatever you like.

Install and build MLPerf Inference
cd ~/src git clone https://github.com/mlcommons/inference.git cd inference git checkout r1.1 git cherry-pick -n 215c057fc6690a47f3f66c72c076a8f73d66cb12 git submodule update --init --recursive cd loadgen CFLAGS="-std=c++14 -Wp,-U_GLIBCXX_ASSERTIONS" python setup.py develop cd ../vision/classification_and_detection/ python setup.py develop

Installing and building MLPerf Inference should be done while the virtual environment created above is active. Of course you are free to locate it wherever you like, it does not need to be in ~/src.